Calculus Examples

Evaluate the Integral integral of x^2e^(2x) with respect to x
x2e2xdx
Step 1
Integrate by parts using the formula udv=uv-vdu, where u=x2 and dv=e2x.
x2(12e2x)-12e2x(2x)dx
Step 2
Simplify.
Tap for more steps...
Step 2.1
Combine 12 and e2x.
x2e2x2-12e2x(2x)dx
Step 2.2
Combine x2 and e2x2.
x2e2x2-12e2x(2x)dx
x2e2x2-12e2x(2x)dx
Step 3
Since 122 is constant with respect to x, move 122 out of the integral.
x2e2x2-(122e2x(x)dx)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Combine 12 and 2.
x2e2x2-(22e2x(x)dx)
Step 4.2
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.1
Cancel the common factor.
x2e2x2-(22e2x(x)dx)
Step 4.2.2
Rewrite the expression.
x2e2x2-(1e2x(x)dx)
x2e2x2-(1e2x(x)dx)
Step 4.3
Multiply e2x(x)dx by 1.
x2e2x2-e2x(x)dx
x2e2x2-e2x(x)dx
Step 5
Integrate by parts using the formula udv=uv-vdu, where u=x and dv=e2x.
x2e2x2-(x(12e2x)-12e2xdx)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Combine 12 and e2x.
x2e2x2-(xe2x2-12e2xdx)
Step 6.2
Combine x and e2x2.
x2e2x2-(xe2x2-12e2xdx)
Step 6.3
Combine 12 and e2x.
x2e2x2-(xe2x2-e2x2dx)
x2e2x2-(xe2x2-e2x2dx)
Step 7
Since 12 is constant with respect to x, move 12 out of the integral.
x2e2x2-(xe2x2-(12e2xdx))
Step 8
Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.
Tap for more steps...
Step 8.1
Let u=2x. Find dudx.
Tap for more steps...
Step 8.1.1
Differentiate 2x.
ddx[2x]
Step 8.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 8.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
21
Step 8.1.4
Multiply 2 by 1.
2
2
Step 8.2
Rewrite the problem using u and du.
x2e2x2-(xe2x2-12eu12du)
x2e2x2-(xe2x2-12eu12du)
Step 9
Combine eu and 12.
x2e2x2-(xe2x2-12eu2du)
Step 10
Since 12 is constant with respect to u, move 12 out of the integral.
x2e2x2-(xe2x2-12(12eudu))
Step 11
Simplify.
Tap for more steps...
Step 11.1
Multiply 12 by 12.
x2e2x2-(xe2x2-122eudu)
Step 11.2
Multiply 2 by 2.
x2e2x2-(xe2x2-14eudu)
x2e2x2-(xe2x2-14eudu)
Step 12
The integral of eu with respect to u is eu.
x2e2x2-(xe2x2-14(eu+C))
Step 13
Simplify.
Tap for more steps...
Step 13.1
Rewrite x2e2x2-(xe2x2-14(eu+C)) as 12x2e2x-(12xe2x-14eu)+C.
12x2e2x-(12xe2x-14eu)+C
Step 13.2
Simplify.
Tap for more steps...
Step 13.2.1
Combine 12 and x2.
x22e2x-(12xe2x-14eu)+C
Step 13.2.2
Combine x22 and e2x.
x2e2x2-(12xe2x-14eu)+C
Step 13.2.3
Combine 12 and x.
x2e2x2-(x2e2x-14eu)+C
Step 13.2.4
Combine x2 and e2x.
x2e2x2-(xe2x2-14eu)+C
Step 13.2.5
Combine eu and 14.
x2e2x2-(xe2x2-eu4)+C
Step 13.2.6
To write -(xe2x2-eu4) as a fraction with a common denominator, multiply by 22.
x2e2x2-(xe2x2-eu4)22+C
Step 13.2.7
Combine -(xe2x2-eu4) and 22.
x2e2x2+-(xe2x2-eu4)22+C
Step 13.2.8
Combine the numerators over the common denominator.
x2e2x-(xe2x2-eu4)22+C
Step 13.2.9
Multiply 2 by -1.
x2e2x-2(xe2x2-eu4)2+C
x2e2x-2(xe2x2-eu4)2+C
x2e2x-2(xe2x2-eu4)2+C
Step 14
Replace all occurrences of u with 2x.
x2e2x-2(xe2x2-e2x4)2+C
Step 15
Simplify.
Tap for more steps...
Step 15.1
Apply the distributive property.
x2e2x-2xe2x2-2(-e2x4)2+C
Step 15.2
Cancel the common factor of 2.
Tap for more steps...
Step 15.2.1
Factor 2 out of -2.
x2e2x+2(-1)xe2x2-2(-e2x4)2+C
Step 15.2.2
Cancel the common factor.
x2e2x+2-1xe2x2-2(-e2x4)2+C
Step 15.2.3
Rewrite the expression.
x2e2x-(xe2x)-2(-e2x4)2+C
x2e2x-(xe2x)-2(-e2x4)2+C
Step 15.3
Cancel the common factor of 2.
Tap for more steps...
Step 15.3.1
Move the leading negative in -e2x4 into the numerator.
x2e2x-(xe2x)-2-e2x42+C
Step 15.3.2
Factor 2 out of -2.
x2e2x-(xe2x)+2(-1)-e2x42+C
Step 15.3.3
Factor 2 out of 4.
x2e2x-(xe2x)+2-1-e2x222+C
Step 15.3.4
Cancel the common factor.
x2e2x-(xe2x)+2-1-e2x222+C
Step 15.3.5
Rewrite the expression.
x2e2x-(xe2x)--e2x22+C
x2e2x-(xe2x)--e2x22+C
Step 15.4
Simplify each term.
Tap for more steps...
Step 15.4.1
Move the negative in front of the fraction.
x2e2x-xe2x--e2x22+C
Step 15.4.2
Multiply --e2x2.
Tap for more steps...
Step 15.4.2.1
Multiply -1 by -1.
x2e2x-xe2x+1e2x22+C
Step 15.4.2.2
Multiply e2x2 by 1.
x2e2x-xe2x+e2x22+C
x2e2x-xe2x+e2x22+C
x2e2x-xe2x+e2x22+C
Step 15.5
To write -xe2x as a fraction with a common denominator, multiply by 22.
x2e2x-xe2x22+e2x22+C
Step 15.6
Combine -xe2x and 22.
x2e2x+-xe2x22+e2x22+C
Step 15.7
Combine the numerators over the common denominator.
x2e2x+-xe2x2+e2x22+C
Step 15.8
Simplify the numerator.
Tap for more steps...
Step 15.8.1
Factor e2x out of -xe2x2+e2x.
Tap for more steps...
Step 15.8.1.1
Factor e2x out of -xe2x2.
x2e2x+e2x(-x2)+e2x22+C
Step 15.8.1.2
Multiply by 1.
x2e2x+e2x(-x2)+e2x122+C
Step 15.8.1.3
Factor e2x out of e2x(-x2)+e2x1.
x2e2x+e2x(-x2+1)22+C
x2e2x+e2x(-x2+1)22+C
Step 15.8.2
Multiply 2 by -1.
x2e2x+e2x(-2x+1)22+C
x2e2x+e2x(-2x+1)22+C
Step 15.9
Factor -1 out of -2x.
x2e2x+e2x(-(2x)+1)22+C
Step 15.10
Rewrite 1 as -1(-1).
x2e2x+e2x(-(2x)-1(-1))22+C
Step 15.11
Factor -1 out of -(2x)-1(-1).
x2e2x+e2x(-(2x-1))22+C
Step 15.12
Rewrite -(2x-1) as -1(2x-1).
x2e2x+e2x(-1(2x-1))22+C
Step 15.13
Move the negative in front of the fraction.
x2e2x-e2x(2x-1)22+C
x2e2x-e2x(2x-1)22+C
Step 16
Reorder terms.
12(x2e2x-12e2x(2x-1))+C
 [x2  12  π  xdx ]