Enter a problem...
Calculus Examples
y44+18y2y44+18y2
Step 1
By the Sum Rule, the derivative of y44+18y2y44+18y2 with respect to yy is ddy[y44]+ddy[18y2]ddy[y44]+ddy[18y2].
ddy[y44]+ddy[18y2]ddy[y44]+ddy[18y2]
Step 2
Step 2.1
Since 1414 is constant with respect to yy, the derivative of y44y44 with respect to yy is 14ddy[y4]14ddy[y4].
14ddy[y4]+ddy[18y2]14ddy[y4]+ddy[18y2]
Step 2.2
Differentiate using the Power Rule which states that ddy[yn]ddy[yn] is nyn-1nyn−1 where n=4n=4.
14(4y3)+ddy[18y2]14(4y3)+ddy[18y2]
Step 2.3
Combine 44 and 1414.
44y3+ddy[18y2]44y3+ddy[18y2]
Step 2.4
Combine 4444 and y3y3.
4y34+ddy[18y2]4y34+ddy[18y2]
Step 2.5
Cancel the common factor of 44.
Step 2.5.1
Cancel the common factor.
4y34+ddy[18y2]
Step 2.5.2
Divide y3 by 1.
y3+ddy[18y2]
y3+ddy[18y2]
y3+ddy[18y2]
Step 3
Step 3.1
Since 18 is constant with respect to y, the derivative of 18y2 with respect to y is 18ddy[1y2].
y3+18ddy[1y2]
Step 3.2
Rewrite 1y2 as (y2)-1.
y3+18ddy[(y2)-1]
Step 3.3
Differentiate using the chain rule, which states that ddy[f(g(y))] is f′(g(y))g′(y) where f(y)=y-1 and g(y)=y2.
Step 3.3.1
To apply the Chain Rule, set u as y2.
y3+18(ddu[u-1]ddy[y2])
Step 3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
y3+18(-u-2ddy[y2])
Step 3.3.3
Replace all occurrences of u with y2.
y3+18(-(y2)-2ddy[y2])
y3+18(-(y2)-2ddy[y2])
Step 3.4
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=2.
y3+18(-(y2)-2(2y))
Step 3.5
Multiply the exponents in (y2)-2.
Step 3.5.1
Apply the power rule and multiply exponents, (am)n=amn.
y3+18(-y2⋅-2(2y))
Step 3.5.2
Multiply 2 by -2.
y3+18(-y-4(2y))
y3+18(-y-4(2y))
Step 3.6
Multiply 2 by -1.
y3+18(-2y-4y)
Step 3.7
Raise y to the power of 1.
y3+18(-2(y1y-4))
Step 3.8
Use the power rule aman=am+n to combine exponents.
y3+18(-2y1-4)
Step 3.9
Subtract 4 from 1.
y3+18(-2y-3)
Step 3.10
Combine -2 and 18.
y3+-28y-3
Step 3.11
Combine -28 and y-3.
y3+-2y-38
Step 3.12
Move y-3 to the denominator using the negative exponent rule b-n=1bn.
y3+-28y3
Step 3.13
Cancel the common factor of -2 and 8.
Step 3.13.1
Factor 2 out of -2.
y3+2(-1)8y3
Step 3.13.2
Cancel the common factors.
Step 3.13.2.1
Factor 2 out of 8y3.
y3+2(-1)2(4y3)
Step 3.13.2.2
Cancel the common factor.
y3+2⋅-12(4y3)
Step 3.13.2.3
Rewrite the expression.
y3+-14y3
y3+-14y3
y3+-14y3
Step 3.14
Move the negative in front of the fraction.
y3-14y3
y3-14y3