Calculus Examples

Find the Derivative - d/dx 7e^x square root of x
7exx
Step 1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 1.1
Use axn=axn to rewrite x as x12.
ddx[7exx12]
Step 1.2
Since 7 is constant with respect to x, the derivative of 7exx12 with respect to x is 7ddx[exx12].
7ddx[exx12]
7ddx[exx12]
Step 2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=ex and g(x)=x12.
7(exddx[x12]+x12ddx[ex])
Step 3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=12.
7(ex(12x12-1)+x12ddx[ex])
Step 4
To write -1 as a fraction with a common denominator, multiply by 22.
7(ex(12x12-122)+x12ddx[ex])
Step 5
Combine -1 and 22.
7(ex(12x12+-122)+x12ddx[ex])
Step 6
Combine the numerators over the common denominator.
7(ex(12x1-122)+x12ddx[ex])
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Multiply -1 by 2.
7(ex(12x1-22)+x12ddx[ex])
Step 7.2
Subtract 2 from 1.
7(ex(12x-12)+x12ddx[ex])
7(ex(12x-12)+x12ddx[ex])
Step 8
Combine fractions.
Tap for more steps...
Step 8.1
Move the negative in front of the fraction.
7(ex(12x-12)+x12ddx[ex])
Step 8.2
Combine 12 and x-12.
7(exx-122+x12ddx[ex])
Step 8.3
Combine ex and x-122.
7(exx-122+x12ddx[ex])
Step 8.4
Move x-12 to the denominator using the negative exponent rule b-n=1bn.
7(ex2x12+x12ddx[ex])
7(ex2x12+x12ddx[ex])
Step 9
Differentiate using the Exponential Rule which states that ddx[ax] is axln(a) where a=e.
7(ex2x12+x12ex)
Step 10
Simplify.
Tap for more steps...
Step 10.1
Apply the distributive property.
7ex2x12+7(x12ex)
Step 10.2
Combine 7 and ex2x12.
7ex2x12+7x12ex
Step 10.3
Reorder terms.
7exx12+7ex2x12
7exx12+7ex2x12
7ex x2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]