Calculus Examples

Evaluate the Integral integral of sin(x)^5 with respect to x
sin5(x)dxsin5(x)dx
Step 1
Factor out sin4(x)sin4(x).
sin4(x)sin(x)dxsin4(x)sin(x)dx
Step 2
Simplify with factoring out.
Tap for more steps...
Step 2.1
Factor 22 out of 44.
sin(x)2(2)sin(x)dxsin(x)2(2)sin(x)dx
Step 2.2
Rewrite sin(x)2(2)sin(x)2(2) as exponentiation.
(sin2(x))2sin(x)dx(sin2(x))2sin(x)dx
(sin2(x))2sin(x)dx(sin2(x))2sin(x)dx
Step 3
Using the Pythagorean Identity, rewrite sin2(x)sin2(x) as 1-cos2(x)1cos2(x).
(1-cos2(x))2sin(x)dx(1cos2(x))2sin(x)dx
Step 4
Let u=cos(x)u=cos(x). Then du=-sin(x)dxdu=sin(x)dx, so -1sin(x)du=dx1sin(x)du=dx. Rewrite using uu and dduu.
Tap for more steps...
Step 4.1
Let u=cos(x)u=cos(x). Find dudxdudx.
Tap for more steps...
Step 4.1.1
Differentiate cos(x)cos(x).
ddx[cos(x)]ddx[cos(x)]
Step 4.1.2
The derivative of cos(x)cos(x) with respect to xx is -sin(x)sin(x).
-sin(x)sin(x)
-sin(x)sin(x)
Step 4.2
Rewrite the problem using uu and dudu.
-(1-u2)2du(1u2)2du
-(1-u2)2du(1u2)2du
Step 5
Since -11 is constant with respect to uu, move -11 out of the integral.
-(1-u2)2du(1u2)2du
Step 6
Expand (1-u2)2(1u2)2.
Tap for more steps...
Step 6.1
Rewrite (1-u2)2 as (1-u2)(1-u2).
-(1-u2)(1-u2)du
Step 6.2
Apply the distributive property.
-1(1-u2)-u2(1-u2)du
Step 6.3
Apply the distributive property.
-11+1(-u2)-u2(1-u2)du
Step 6.4
Apply the distributive property.
-11+1(-u2)-u21-u2(-u2)du
Step 6.5
Move u2.
-11+1-1u2-11u2-u2(-u2)du
Step 6.6
Move u2.
-11+1-1u2-11u2-1-1u2u2du
Step 6.7
Multiply 1 by 1.
-1+1-1u2-11u2-1-1u2u2du
Step 6.8
Multiply -1 by 1.
-1-u2-11u2-1-1u2u2du
Step 6.9
Multiply -1 by 1.
-1-u2-u2-1-1u2u2du
Step 6.10
Multiply -1 by -1.
-1-u2-u2+1u2u2du
Step 6.11
Multiply u2 by 1.
-1-u2-u2+u2u2du
Step 6.12
Use the power rule aman=am+n to combine exponents.
-1-u2-u2+u2+2du
Step 6.13
Add 2 and 2.
-1-u2-u2+u4du
Step 6.14
Subtract u2 from -u2.
-1-2u2+u4du
Step 6.15
Reorder -2u2 and u4.
-1+u4-2u2du
Step 6.16
Move 1.
-u4-2u2+1du
-u4-2u2+1du
Step 7
Split the single integral into multiple integrals.
-(u4du+-2u2du+du)
Step 8
By the Power Rule, the integral of u4 with respect to u is 15u5.
-(15u5+C+-2u2du+du)
Step 9
Since -2 is constant with respect to u, move -2 out of the integral.
-(15u5+C-2u2du+du)
Step 10
By the Power Rule, the integral of u2 with respect to u is 13u3.
-(15u5+C-2(13u3+C)+du)
Step 11
Apply the constant rule.
-(15u5+C-2(13u3+C)+u+C)
Step 12
Simplify.
Tap for more steps...
Step 12.1
Simplify.
Tap for more steps...
Step 12.1.1
Combine 13 and u3.
-(15u5+C-2(u33+C)+u+C)
Step 12.1.2
Combine 15 and u5.
-(u55+C-2(u33+C)+u+C)
-(u55+C-2(u33+C)+u+C)
Step 12.2
Simplify.
-(u55-2u33+u)+C
-(u55-2u33+u)+C
Step 13
Replace all occurrences of u with cos(x).
-(cos5(x)5-2cos3(x)3+cos(x))+C
Step 14
Reorder terms.
-(15cos5(x)-23cos3(x)+cos(x))+C
 [x2  12  π  xdx ]