Calculus Examples

Evaluate the Integral integral of (( natural log of x)^2)/x with respect to x
ln2(x)xdx
Step 1
Let u=ln(x). Then du=1xdx, so xdu=dx. Rewrite using u and du.
Tap for more steps...
Step 1.1
Let u=ln(x). Find dudx.
Tap for more steps...
Step 1.1.1
Differentiate ln(x).
ddx[ln(x)]
Step 1.1.2
The derivative of ln(x) with respect to x is 1x.
1x
1x
Step 1.2
Rewrite the problem using u and du.
u2du
u2du
Step 2
By the Power Rule, the integral of u2 with respect to u is 13u3.
13u3+C
Step 3
Replace all occurrences of u with ln(x).
13ln3(x)+C
 [x2  12  π  xdx ]