Calculus Examples

Evaluate the Integral integral of ( natural log of x)/(x^2) with respect to x
ln(x)x2dx
Step 1
Apply basic rules of exponents.
Tap for more steps...
Step 1.1
Move x2 out of the denominator by raising it to the -1 power.
ln(x)(x2)-1dx
Step 1.2
Multiply the exponents in (x2)-1.
Tap for more steps...
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
ln(x)x2-1dx
Step 1.2.2
Multiply 2 by -1.
ln(x)x-2dx
ln(x)x-2dx
ln(x)x-2dx
Step 2
Integrate by parts using the formula udv=uv-vdu, where u=ln(x) and dv=x-2.
ln(x)(-1x)--1x1xdx
Step 3
Simplify.
Tap for more steps...
Step 3.1
Combine ln(x) and 1x.
-ln(x)x--1x1xdx
Step 3.2
Multiply 1x by 1x.
-ln(x)x--1xxdx
Step 3.3
Raise x to the power of 1.
-ln(x)x--1x1xdx
Step 3.4
Raise x to the power of 1.
-ln(x)x--1x1x1dx
Step 3.5
Use the power rule aman=am+n to combine exponents.
-ln(x)x--1x1+1dx
Step 3.6
Add 1 and 1.
-ln(x)x--1x2dx
-ln(x)x--1x2dx
Step 4
Since -1 is constant with respect to x, move -1 out of the integral.
-ln(x)x--1x2dx
Step 5
Simplify the expression.
Tap for more steps...
Step 5.1
Simplify.
Tap for more steps...
Step 5.1.1
Multiply -1 by -1.
-ln(x)x+11x2dx
Step 5.1.2
Multiply 1x2dx by 1.
-ln(x)x+1x2dx
-ln(x)x+1x2dx
Step 5.2
Apply basic rules of exponents.
Tap for more steps...
Step 5.2.1
Move x2 out of the denominator by raising it to the -1 power.
-ln(x)x+(x2)-1dx
Step 5.2.2
Multiply the exponents in (x2)-1.
Tap for more steps...
Step 5.2.2.1
Apply the power rule and multiply exponents, (am)n=amn.
-ln(x)x+x2-1dx
Step 5.2.2.2
Multiply 2 by -1.
-ln(x)x+x-2dx
-ln(x)x+x-2dx
-ln(x)x+x-2dx
-ln(x)x+x-2dx
Step 6
By the Power Rule, the integral of x-2 with respect to x is -x-1.
-ln(x)x-x-1+C
Step 7
Rewrite -ln(x)x-x-1+C as -ln(x)x-1x+C.
-ln(x)x-1x+C
ln(x)x2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]