Enter a problem...
Calculus Examples
∫xe4xdx∫xe4xdx
Step 1
Integrate by parts using the formula ∫udv=uv-∫vdu∫udv=uv−∫vdu, where u=xu=x and dv=e4xdv=e4x.
x(14e4x)-∫14e4xdxx(14e4x)−∫14e4xdx
Step 2
Step 2.1
Combine 1414 and e4xe4x.
xe4x4-∫14e4xdxxe4x4−∫14e4xdx
Step 2.2
Combine xx and e4x4e4x4.
xe4x4-∫14e4xdxxe4x4−∫14e4xdx
xe4x4-∫14e4xdx
Step 3
Since 14 is constant with respect to x, move 14 out of the integral.
xe4x4-(14∫e4xdx)
Step 4
Step 4.1
Let u=4x. Find dudx.
Step 4.1.1
Differentiate 4x.
ddx[4x]
Step 4.1.2
Since 4 is constant with respect to x, the derivative of 4x with respect to x is 4ddx[x].
4ddx[x]
Step 4.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
4⋅1
Step 4.1.4
Multiply 4 by 1.
4
4
Step 4.2
Rewrite the problem using u and du.
xe4x4-14∫eu14du
xe4x4-14∫eu14du
Step 5
Combine eu and 14.
xe4x4-14∫eu4du
Step 6
Since 14 is constant with respect to u, move 14 out of the integral.
xe4x4-14(14∫eudu)
Step 7
Step 7.1
Multiply 14 by 14.
xe4x4-14⋅4∫eudu
Step 7.2
Multiply 4 by 4.
xe4x4-116∫eudu
xe4x4-116∫eudu
Step 8
The integral of eu with respect to u is eu.
xe4x4-116(eu+C)
Step 9
Rewrite xe4x4-116(eu+C) as 14xe4x-116eu+C.
14xe4x-116eu+C
Step 10
Replace all occurrences of u with 4x.
14xe4x-116e4x+C