Enter a problem...
Calculus Examples
x3+3x2y+y3=8x3+3x2y+y3=8
Step 1
Differentiate both sides of the equation.
ddx(x3+3x2y+y3)=ddx(8)ddx(x3+3x2y+y3)=ddx(8)
Step 2
Step 2.1
Differentiate.
Step 2.1.1
By the Sum Rule, the derivative of x3+3x2y+y3x3+3x2y+y3 with respect to xx is ddx[x3]+ddx[3x2y]+ddx[y3]ddx[x3]+ddx[3x2y]+ddx[y3].
ddx[x3]+ddx[3x2y]+ddx[y3]ddx[x3]+ddx[3x2y]+ddx[y3]
Step 2.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2+ddx[3x2y]+ddx[y3]3x2+ddx[3x2y]+ddx[y3]
3x2+ddx[3x2y]+ddx[y3]3x2+ddx[3x2y]+ddx[y3]
Step 2.2
Evaluate ddx[3x2y]ddx[3x2y].
Step 2.2.1
Since 33 is constant with respect to xx, the derivative of 3x2y3x2y with respect to xx is 3ddx[x2y]3ddx[x2y].
3x2+3ddx[x2y]+ddx[y3]3x2+3ddx[x2y]+ddx[y3]
Step 2.2.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2f(x)=x2 and g(x)=yg(x)=y.
3x2+3(x2ddx[y]+yddx[x2])+ddx[y3]3x2+3(x2ddx[y]+yddx[x2])+ddx[y3]
Step 2.2.3
Rewrite ddx[y]ddx[y] as y′.
3x2+3(x2y′+yddx[x2])+ddx[y3]
Step 2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
3x2+3(x2y′+y(2x))+ddx[y3]
Step 2.2.5
Move 2 to the left of y.
3x2+3(x2y′+2yx)+ddx[y3]
3x2+3(x2y′+2yx)+ddx[y3]
Step 2.3
Evaluate ddx[y3].
Step 2.3.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x3 and g(x)=y.
Step 2.3.1.1
To apply the Chain Rule, set u as y.
3x2+3(x2y′+2yx)+ddu[u3]ddx[y]
Step 2.3.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3(x2y′+2yx)+3u2ddx[y]
Step 2.3.1.3
Replace all occurrences of u with y.
3x2+3(x2y′+2yx)+3y2ddx[y]
3x2+3(x2y′+2yx)+3y2ddx[y]
Step 2.3.2
Rewrite ddx[y] as y′.
3x2+3(x2y′+2yx)+3y2y′
3x2+3(x2y′+2yx)+3y2y′
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
3x2+3(x2y′)+3(2yx)+3y2y′
Step 2.4.2
Multiply 2 by 3.
3x2+3x2y′+6yx+3y2y′
Step 2.4.3
Reorder terms.
3x2+3x2y′+6xy+3y2y′
3x2+3x2y′+6xy+3y2y′
3x2+3x2y′+6xy+3y2y′
Step 3
Since 8 is constant with respect to x, the derivative of 8 with respect to x is 0.
0
Step 4
Reform the equation by setting the left side equal to the right side.
3x2+3x2y′+6xy+3y2y′=0
Step 5
Step 5.1
Move all terms not containing y′ to the right side of the equation.
Step 5.1.1
Subtract 3x2 from both sides of the equation.
3x2y′+6xy+3y2y′=-3x2
Step 5.1.2
Subtract 6xy from both sides of the equation.
3x2y′+3y2y′=-3x2-6xy
3x2y′+3y2y′=-3x2-6xy
Step 5.2
Factor 3y′ out of 3x2y′+3y2y′.
Step 5.2.1
Factor 3y′ out of 3x2y′.
3y′x2+3y2y′=-3x2-6xy
Step 5.2.2
Factor 3y′ out of 3y2y′.
3y′x2+3y′y2=-3x2-6xy
Step 5.2.3
Factor 3y′ out of 3y′x2+3y′y2.
3y′(x2+y2)=-3x2-6xy
3y′(x2+y2)=-3x2-6xy
Step 5.3
Divide each term in 3y′(x2+y2)=-3x2-6xy by 3(x2+y2) and simplify.
Step 5.3.1
Divide each term in 3y′(x2+y2)=-3x2-6xy by 3(x2+y2).
3y′(x2+y2)3(x2+y2)=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of 3.
Step 5.3.2.1.1
Cancel the common factor.
3y′(x2+y2)3(x2+y2)=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.1.2
Rewrite the expression.
y′(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
y′(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.2
Cancel the common factor of x2+y2.
Step 5.3.2.2.1
Cancel the common factor.
y′(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.2.2
Divide y′ by 1.
y′=-3x23(x2+y2)+-6xy3(x2+y2)
y′=-3x23(x2+y2)+-6xy3(x2+y2)
y′=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Simplify each term.
Step 5.3.3.1.1
Cancel the common factor of -3 and 3.
Step 5.3.3.1.1.1
Factor 3 out of -3x2.
y′=3(-x2)3(x2+y2)+-6xy3(x2+y2)
Step 5.3.3.1.1.2
Cancel the common factors.
Step 5.3.3.1.1.2.1
Cancel the common factor.
y′=3(-x2)3(x2+y2)+-6xy3(x2+y2)
Step 5.3.3.1.1.2.2
Rewrite the expression.
y′=-x2x2+y2+-6xy3(x2+y2)
y′=-x2x2+y2+-6xy3(x2+y2)
y′=-x2x2+y2+-6xy3(x2+y2)
Step 5.3.3.1.2
Move the negative in front of the fraction.
y′=-x2x2+y2+-6xy3(x2+y2)
Step 5.3.3.1.3
Cancel the common factor of -6 and 3.
Step 5.3.3.1.3.1
Factor 3 out of -6xy.
y′=-x2x2+y2+3(-2xy)3(x2+y2)
Step 5.3.3.1.3.2
Cancel the common factors.
Step 5.3.3.1.3.2.1
Cancel the common factor.
y′=-x2x2+y2+3(-2xy)3(x2+y2)
Step 5.3.3.1.3.2.2
Rewrite the expression.
y′=-x2x2+y2+-2xyx2+y2
y′=-x2x2+y2+-2xyx2+y2
y′=-x2x2+y2+-2xyx2+y2
Step 5.3.3.1.4
Move the negative in front of the fraction.
y′=-x2x2+y2-2xyx2+y2
y′=-x2x2+y2-2xyx2+y2
Step 5.3.3.2
Simplify terms.
Step 5.3.3.2.1
Combine the numerators over the common denominator.
y′=-x2-2xyx2+y2
Step 5.3.3.2.2
Factor x out of -x2-2xy.
Step 5.3.3.2.2.1
Factor x out of -x2.
y′=x(-x)-2xyx2+y2
Step 5.3.3.2.2.2
Factor x out of -2xy.
y′=x(-x)+x(-2y)x2+y2
Step 5.3.3.2.2.3
Factor x out of x(-x)+x(-2y).
y′=x(-x-2y)x2+y2
y′=x(-x-2y)x2+y2
Step 5.3.3.2.3
Factor -1 out of -x.
y′=x(-(x)-2y)x2+y2
Step 5.3.3.2.4
Factor -1 out of -2y.
y′=x(-(x)-(2y))x2+y2
Step 5.3.3.2.5
Factor -1 out of -(x)-(2y).
y′=x(-(x+2y))x2+y2
Step 5.3.3.2.6
Simplify the expression.
Step 5.3.3.2.6.1
Rewrite -(x+2y) as -1(x+2y).
y′=x(-1(x+2y))x2+y2
Step 5.3.3.2.6.2
Move the negative in front of the fraction.
y′=-x(x+2y)x2+y2
y′=-x(x+2y)x2+y2
y′=-x(x+2y)x2+y2
y′=-x(x+2y)x2+y2
y′=-x(x+2y)x2+y2
y′=-x(x+2y)x2+y2
Step 6
Replace y′ with dydx.
dydx=-x(x+2y)x2+y2