Calculus Examples

Find dy/dx x^3+3x^2y+y^3=8
x3+3x2y+y3=8x3+3x2y+y3=8
Step 1
Differentiate both sides of the equation.
ddx(x3+3x2y+y3)=ddx(8)ddx(x3+3x2y+y3)=ddx(8)
Step 2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of x3+3x2y+y3x3+3x2y+y3 with respect to xx is ddx[x3]+ddx[3x2y]+ddx[y3]ddx[x3]+ddx[3x2y]+ddx[y3].
ddx[x3]+ddx[3x2y]+ddx[y3]ddx[x3]+ddx[3x2y]+ddx[y3]
Step 2.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
3x2+ddx[3x2y]+ddx[y3]3x2+ddx[3x2y]+ddx[y3]
3x2+ddx[3x2y]+ddx[y3]3x2+ddx[3x2y]+ddx[y3]
Step 2.2
Evaluate ddx[3x2y]ddx[3x2y].
Tap for more steps...
Step 2.2.1
Since 33 is constant with respect to xx, the derivative of 3x2y3x2y with respect to xx is 3ddx[x2y]3ddx[x2y].
3x2+3ddx[x2y]+ddx[y3]3x2+3ddx[x2y]+ddx[y3]
Step 2.2.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2f(x)=x2 and g(x)=yg(x)=y.
3x2+3(x2ddx[y]+yddx[x2])+ddx[y3]3x2+3(x2ddx[y]+yddx[x2])+ddx[y3]
Step 2.2.3
Rewrite ddx[y]ddx[y] as y.
3x2+3(x2y+yddx[x2])+ddx[y3]
Step 2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
3x2+3(x2y+y(2x))+ddx[y3]
Step 2.2.5
Move 2 to the left of y.
3x2+3(x2y+2yx)+ddx[y3]
3x2+3(x2y+2yx)+ddx[y3]
Step 2.3
Evaluate ddx[y3].
Tap for more steps...
Step 2.3.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3 and g(x)=y.
Tap for more steps...
Step 2.3.1.1
To apply the Chain Rule, set u as y.
3x2+3(x2y+2yx)+ddu[u3]ddx[y]
Step 2.3.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3(x2y+2yx)+3u2ddx[y]
Step 2.3.1.3
Replace all occurrences of u with y.
3x2+3(x2y+2yx)+3y2ddx[y]
3x2+3(x2y+2yx)+3y2ddx[y]
Step 2.3.2
Rewrite ddx[y] as y.
3x2+3(x2y+2yx)+3y2y
3x2+3(x2y+2yx)+3y2y
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Apply the distributive property.
3x2+3(x2y)+3(2yx)+3y2y
Step 2.4.2
Multiply 2 by 3.
3x2+3x2y+6yx+3y2y
Step 2.4.3
Reorder terms.
3x2+3x2y+6xy+3y2y
3x2+3x2y+6xy+3y2y
3x2+3x2y+6xy+3y2y
Step 3
Since 8 is constant with respect to x, the derivative of 8 with respect to x is 0.
0
Step 4
Reform the equation by setting the left side equal to the right side.
3x2+3x2y+6xy+3y2y=0
Step 5
Solve for y.
Tap for more steps...
Step 5.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 5.1.1
Subtract 3x2 from both sides of the equation.
3x2y+6xy+3y2y=-3x2
Step 5.1.2
Subtract 6xy from both sides of the equation.
3x2y+3y2y=-3x2-6xy
3x2y+3y2y=-3x2-6xy
Step 5.2
Factor 3y out of 3x2y+3y2y.
Tap for more steps...
Step 5.2.1
Factor 3y out of 3x2y.
3yx2+3y2y=-3x2-6xy
Step 5.2.2
Factor 3y out of 3y2y.
3yx2+3yy2=-3x2-6xy
Step 5.2.3
Factor 3y out of 3yx2+3yy2.
3y(x2+y2)=-3x2-6xy
3y(x2+y2)=-3x2-6xy
Step 5.3
Divide each term in 3y(x2+y2)=-3x2-6xy by 3(x2+y2) and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in 3y(x2+y2)=-3x2-6xy by 3(x2+y2).
3y(x2+y2)3(x2+y2)=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
3y(x2+y2)3(x2+y2)=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.1.2
Rewrite the expression.
y(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
y(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.2
Cancel the common factor of x2+y2.
Tap for more steps...
Step 5.3.2.2.1
Cancel the common factor.
y(x2+y2)x2+y2=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.2.2.2
Divide y by 1.
y=-3x23(x2+y2)+-6xy3(x2+y2)
y=-3x23(x2+y2)+-6xy3(x2+y2)
y=-3x23(x2+y2)+-6xy3(x2+y2)
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Simplify each term.
Tap for more steps...
Step 5.3.3.1.1
Cancel the common factor of -3 and 3.
Tap for more steps...
Step 5.3.3.1.1.1
Factor 3 out of -3x2.
y=3(-x2)3(x2+y2)+-6xy3(x2+y2)
Step 5.3.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 5.3.3.1.1.2.1
Cancel the common factor.
y=3(-x2)3(x2+y2)+-6xy3(x2+y2)
Step 5.3.3.1.1.2.2
Rewrite the expression.
y=-x2x2+y2+-6xy3(x2+y2)
y=-x2x2+y2+-6xy3(x2+y2)
y=-x2x2+y2+-6xy3(x2+y2)
Step 5.3.3.1.2
Move the negative in front of the fraction.
y=-x2x2+y2+-6xy3(x2+y2)
Step 5.3.3.1.3
Cancel the common factor of -6 and 3.
Tap for more steps...
Step 5.3.3.1.3.1
Factor 3 out of -6xy.
y=-x2x2+y2+3(-2xy)3(x2+y2)
Step 5.3.3.1.3.2
Cancel the common factors.
Tap for more steps...
Step 5.3.3.1.3.2.1
Cancel the common factor.
y=-x2x2+y2+3(-2xy)3(x2+y2)
Step 5.3.3.1.3.2.2
Rewrite the expression.
y=-x2x2+y2+-2xyx2+y2
y=-x2x2+y2+-2xyx2+y2
y=-x2x2+y2+-2xyx2+y2
Step 5.3.3.1.4
Move the negative in front of the fraction.
y=-x2x2+y2-2xyx2+y2
y=-x2x2+y2-2xyx2+y2
Step 5.3.3.2
Simplify terms.
Tap for more steps...
Step 5.3.3.2.1
Combine the numerators over the common denominator.
y=-x2-2xyx2+y2
Step 5.3.3.2.2
Factor x out of -x2-2xy.
Tap for more steps...
Step 5.3.3.2.2.1
Factor x out of -x2.
y=x(-x)-2xyx2+y2
Step 5.3.3.2.2.2
Factor x out of -2xy.
y=x(-x)+x(-2y)x2+y2
Step 5.3.3.2.2.3
Factor x out of x(-x)+x(-2y).
y=x(-x-2y)x2+y2
y=x(-x-2y)x2+y2
Step 5.3.3.2.3
Factor -1 out of -x.
y=x(-(x)-2y)x2+y2
Step 5.3.3.2.4
Factor -1 out of -2y.
y=x(-(x)-(2y))x2+y2
Step 5.3.3.2.5
Factor -1 out of -(x)-(2y).
y=x(-(x+2y))x2+y2
Step 5.3.3.2.6
Simplify the expression.
Tap for more steps...
Step 5.3.3.2.6.1
Rewrite -(x+2y) as -1(x+2y).
y=x(-1(x+2y))x2+y2
Step 5.3.3.2.6.2
Move the negative in front of the fraction.
y=-x(x+2y)x2+y2
y=-x(x+2y)x2+y2
y=-x(x+2y)x2+y2
y=-x(x+2y)x2+y2
y=-x(x+2y)x2+y2
y=-x(x+2y)x2+y2
Step 6
Replace y with dydx.
dydx=-x(x+2y)x2+y2
 [x2  12  π  xdx ]