Enter a problem...
Calculus Examples
sin(2x)
Step 1
Step 1.1
Let u=2x. Find dudx.
Step 1.1.1
Differentiate 2x.
ddx[2x]
Step 1.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2⋅1
Step 1.1.4
Multiply 2 by 1.
2
2
Step 1.2
Rewrite the problem using u and du.
∫sin(u)12du
∫sin(u)12du
Step 2
Combine sin(u) and 12.
∫sin(u)2du
Step 3
Since 12 is constant with respect to u, move 12 out of the integral.
12∫sin(u)du
Step 4
The integral of sin(u) with respect to u is -cos(u).
12(-cos(u)+C)
Step 5
Step 5.1
Simplify.
12(-cos(u))+C
Step 5.2
Combine 12 and cos(u).
-cos(u)2+C
-cos(u)2+C
Step 6
Replace all occurrences of u with 2x.
-cos(2x)2+C
Step 7
Reorder terms.
-12cos(2x)+C