Enter a problem...
Calculus Examples
sin(arctan(x))sin(arctan(x))
Step 1
Draw a triangle in the plane with vertices (1,x)(1,x), (1,0)(1,0), and the origin. Then arctan(x)arctan(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,x)(1,x). Therefore, sin(arctan(x))sin(arctan(x)) is x√1+x2x√1+x2.
x√1+x2x√1+x2
Step 2
Multiply x√1+x2x√1+x2 by √1+x2√1+x2√1+x2√1+x2.
x√1+x2⋅√1+x2√1+x2x√1+x2⋅√1+x2√1+x2
Step 3
Step 3.1
Multiply x√1+x2x√1+x2 by √1+x2√1+x2√1+x2√1+x2.
x√1+x2√1+x2√1+x2x√1+x2√1+x2√1+x2
Step 3.2
Raise √1+x2√1+x2 to the power of 11.
x√1+x2√1+x21√1+x2x√1+x2√1+x21√1+x2
Step 3.3
Raise √1+x2√1+x2 to the power of 11.
x√1+x2√1+x21√1+x21x√1+x2√1+x21√1+x21
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
x√1+x2√1+x21+1x√1+x2√1+x21+1
Step 3.5
Add 11 and 11.
x√1+x2√1+x22x√1+x2√1+x22
Step 3.6
Rewrite √1+x22√1+x22 as 1+x21+x2.
Step 3.6.1
Use n√ax=axnn√ax=axn to rewrite √1+x2√1+x2 as (1+x2)12(1+x2)12.
x√1+x2((1+x2)12)2x√1+x2((1+x2)12)2
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x√1+x2(1+x2)12⋅2x√1+x2(1+x2)12⋅2
Step 3.6.3
Combine 1212 and 22.
x√1+x2(1+x2)22x√1+x2(1+x2)22
Step 3.6.4
Cancel the common factor of 22.
Step 3.6.4.1
Cancel the common factor.
x√1+x2(1+x2)22
Step 3.6.4.2
Rewrite the expression.
x√1+x2(1+x2)1
x√1+x2(1+x2)1
Step 3.6.5
Simplify.
x√1+x21+x2
x√1+x21+x2
x√1+x21+x2