Calculus Examples

Simplify sin(arctan(x))
sin(arctan(x))sin(arctan(x))
Step 1
Draw a triangle in the plane with vertices (1,x)(1,x), (1,0)(1,0), and the origin. Then arctan(x)arctan(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (1,x)(1,x). Therefore, sin(arctan(x))sin(arctan(x)) is x1+x2x1+x2.
x1+x2x1+x2
Step 2
Multiply x1+x2x1+x2 by 1+x21+x21+x21+x2.
x1+x21+x21+x2x1+x21+x21+x2
Step 3
Combine and simplify the denominator.
Tap for more steps...
Step 3.1
Multiply x1+x2x1+x2 by 1+x21+x21+x21+x2.
x1+x21+x21+x2x1+x21+x21+x2
Step 3.2
Raise 1+x21+x2 to the power of 11.
x1+x21+x211+x2x1+x21+x211+x2
Step 3.3
Raise 1+x21+x2 to the power of 11.
x1+x21+x211+x21x1+x21+x211+x21
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
x1+x21+x21+1x1+x21+x21+1
Step 3.5
Add 11 and 11.
x1+x21+x22x1+x21+x22
Step 3.6
Rewrite 1+x221+x22 as 1+x21+x2.
Tap for more steps...
Step 3.6.1
Use nax=axnnax=axn to rewrite 1+x21+x2 as (1+x2)12(1+x2)12.
x1+x2((1+x2)12)2x1+x2((1+x2)12)2
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
x1+x2(1+x2)122x1+x2(1+x2)122
Step 3.6.3
Combine 1212 and 22.
x1+x2(1+x2)22x1+x2(1+x2)22
Step 3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 3.6.4.1
Cancel the common factor.
x1+x2(1+x2)22
Step 3.6.4.2
Rewrite the expression.
x1+x2(1+x2)1
x1+x2(1+x2)1
Step 3.6.5
Simplify.
x1+x21+x2
x1+x21+x2
x1+x21+x2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]