Calculus Examples

Find the Derivative - d/dx 1/2x^2 square root of 16-x^2
12x216-x212x216x2
Step 1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 1.1
Combine x2 and 12.
ddx[x2216-x2]
Step 1.2
Combine fractions.
Tap for more steps...
Step 1.2.1
Combine x22 and 16-x2.
ddx[x216-x22]
Step 1.2.2
Use nax=axn to rewrite 16-x2 as (16-x2)12.
ddx[x2(16-x2)122]
ddx[x2(16-x2)122]
Step 1.3
Since 12 is constant with respect to x, the derivative of x2(16-x2)122 with respect to x is 12ddx[x2(16-x2)12].
12ddx[x2(16-x2)12]
12ddx[x2(16-x2)12]
Step 2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=(16-x2)12.
12(x2ddx[(16-x2)12]+(16-x2)12ddx[x2])
Step 3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x12 and g(x)=16-x2.
Tap for more steps...
Step 3.1
To apply the Chain Rule, set u as 16-x2.
12(x2(ddu[u12]ddx[16-x2])+(16-x2)12ddx[x2])
Step 3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
12(x2(12u12-1ddx[16-x2])+(16-x2)12ddx[x2])
Step 3.3
Replace all occurrences of u with 16-x2.
12(x2(12(16-x2)12-1ddx[16-x2])+(16-x2)12ddx[x2])
12(x2(12(16-x2)12-1ddx[16-x2])+(16-x2)12ddx[x2])
Step 4
To write -1 as a fraction with a common denominator, multiply by 22.
12(x2(12(16-x2)12-122ddx[16-x2])+(16-x2)12ddx[x2])
Step 5
Combine -1 and 22.
12(x2(12(16-x2)12+-122ddx[16-x2])+(16-x2)12ddx[x2])
Step 6
Combine the numerators over the common denominator.
12(x2(12(16-x2)1-122ddx[16-x2])+(16-x2)12ddx[x2])
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Multiply -1 by 2.
12(x2(12(16-x2)1-22ddx[16-x2])+(16-x2)12ddx[x2])
Step 7.2
Subtract 2 from 1.
12(x2(12(16-x2)-12ddx[16-x2])+(16-x2)12ddx[x2])
12(x2(12(16-x2)-12ddx[16-x2])+(16-x2)12ddx[x2])
Step 8
Combine fractions.
Tap for more steps...
Step 8.1
Move the negative in front of the fraction.
12(x2(12(16-x2)-12ddx[16-x2])+(16-x2)12ddx[x2])
Step 8.2
Combine 12 and (16-x2)-12.
12(x2((16-x2)-122ddx[16-x2])+(16-x2)12ddx[x2])
Step 8.3
Move (16-x2)-12 to the denominator using the negative exponent rule b-n=1bn.
12(x2(12(16-x2)12ddx[16-x2])+(16-x2)12ddx[x2])
Step 8.4
Combine 12(16-x2)12 and x2.
12(x22(16-x2)12ddx[16-x2]+(16-x2)12ddx[x2])
12(x22(16-x2)12ddx[16-x2]+(16-x2)12ddx[x2])
Step 9
By the Sum Rule, the derivative of 16-x2 with respect to x is ddx[16]+ddx[-x2].
12(x22(16-x2)12(ddx[16]+ddx[-x2])+(16-x2)12ddx[x2])
Step 10
Since 16 is constant with respect to x, the derivative of 16 with respect to x is 0.
12(x22(16-x2)12(0+ddx[-x2])+(16-x2)12ddx[x2])
Step 11
Add 0 and ddx[-x2].
12(x22(16-x2)12ddx[-x2]+(16-x2)12ddx[x2])
Step 12
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
12(x22(16-x2)12(-ddx[x2])+(16-x2)12ddx[x2])
Step 13
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
12(x22(16-x2)12(-(2x))+(16-x2)12ddx[x2])
Step 14
Combine fractions.
Tap for more steps...
Step 14.1
Multiply 2 by -1.
12(x22(16-x2)12(-2x)+(16-x2)12ddx[x2])
Step 14.2
Combine -2 and x22(16-x2)12.
12(-2x22(16-x2)12x+(16-x2)12ddx[x2])
Step 14.3
Combine -2x22(16-x2)12 and x.
12(-2x2x2(16-x2)12+(16-x2)12ddx[x2])
12(-2x2x2(16-x2)12+(16-x2)12ddx[x2])
Step 15
Raise x to the power of 1.
12(-2(x1x2)2(16-x2)12+(16-x2)12ddx[x2])
Step 16
Use the power rule aman=am+n to combine exponents.
12(-2x1+22(16-x2)12+(16-x2)12ddx[x2])
Step 17
Add 1 and 2.
12(-2x32(16-x2)12+(16-x2)12ddx[x2])
Step 18
Factor 2 out of -2x3.
12(2(-x3)2(16-x2)12+(16-x2)12ddx[x2])
Step 19
Cancel the common factors.
Tap for more steps...
Step 19.1
Factor 2 out of 2(16-x2)12.
12(2(-x3)2((16-x2)12)+(16-x2)12ddx[x2])
Step 19.2
Cancel the common factor.
12(2(-x3)2(16-x2)12+(16-x2)12ddx[x2])
Step 19.3
Rewrite the expression.
12(-x3(16-x2)12+(16-x2)12ddx[x2])
12(-x3(16-x2)12+(16-x2)12ddx[x2])
Step 20
Move the negative in front of the fraction.
12(-x3(16-x2)12+(16-x2)12ddx[x2])
Step 21
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
12(-x3(16-x2)12+(16-x2)12(2x))
Step 22
Reorder.
Tap for more steps...
Step 22.1
Move 2 to the left of (16-x2)12.
12(-x3(16-x2)12+2(16-x2)12x)
Step 22.2
Move (-x2+16)12.
12(-x3(-x2+16)12+2x(-x2+16)12)
12(-x3(-x2+16)12+2x(-x2+16)12)
Step 23
To write 2x(-x2+16)12 as a fraction with a common denominator, multiply by (-x2+16)12(-x2+16)12.
12(-x3(-x2+16)12+2x(-x2+16)12(-x2+16)12(-x2+16)12)
Step 24
Combine the numerators over the common denominator.
12-x3+2x(-x2+16)12(-x2+16)12(-x2+16)12
Step 25
Multiply (-x2+16)12 by (-x2+16)12 by adding the exponents.
Tap for more steps...
Step 25.1
Move (-x2+16)12.
12-x3+2x((-x2+16)12(-x2+16)12)(-x2+16)12
Step 25.2
Use the power rule aman=am+n to combine exponents.
12-x3+2x(-x2+16)12+12(-x2+16)12
Step 25.3
Combine the numerators over the common denominator.
12-x3+2x(-x2+16)1+12(-x2+16)12
Step 25.4
Add 1 and 1.
12-x3+2x(-x2+16)22(-x2+16)12
Step 25.5
Divide 2 by 2.
12-x3+2x(-x2+16)1(-x2+16)12
12-x3+2x(-x2+16)1(-x2+16)12
Step 26
Simplify 2x(-x2+16)1.
12-x3+2x(-x2+16)(-x2+16)12
Step 27
Multiply 12 by -x3+2x(-x2+16)(-x2+16)12.
-x3+2x(-x2+16)2(-x2+16)12
Step 28
Simplify.
Tap for more steps...
Step 28.1
Apply the distributive property.
-x3+2x(-x2)+2x162(-x2+16)12
Step 28.2
Simplify the numerator.
Tap for more steps...
Step 28.2.1
Simplify each term.
Tap for more steps...
Step 28.2.1.1
Rewrite using the commutative property of multiplication.
-x3+2-1xx2+2x162(-x2+16)12
Step 28.2.1.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 28.2.1.2.1
Move x2.
-x3+2-1(x2x)+2x162(-x2+16)12
Step 28.2.1.2.2
Multiply x2 by x.
Tap for more steps...
Step 28.2.1.2.2.1
Raise x to the power of 1.
-x3+2-1(x2x1)+2x162(-x2+16)12
Step 28.2.1.2.2.2
Use the power rule aman=am+n to combine exponents.
-x3+2-1x2+1+2x162(-x2+16)12
-x3+2-1x2+1+2x162(-x2+16)12
Step 28.2.1.2.3
Add 2 and 1.
-x3+2-1x3+2x162(-x2+16)12
-x3+2-1x3+2x162(-x2+16)12
Step 28.2.1.3
Multiply 2 by -1.
-x3-2x3+2x162(-x2+16)12
Step 28.2.1.4
Multiply 16 by 2.
-x3-2x3+32x2(-x2+16)12
-x3-2x3+32x2(-x2+16)12
Step 28.2.2
Subtract 2x3 from -x3.
-3x3+32x2(-x2+16)12
-3x3+32x2(-x2+16)12
Step 28.3
Factor x out of -3x3+32x.
Tap for more steps...
Step 28.3.1
Factor x out of -3x3.
x(-3x2)+32x2(-x2+16)12
Step 28.3.2
Factor x out of 32x.
x(-3x2)+x322(-x2+16)12
Step 28.3.3
Factor x out of x(-3x2)+x32.
x(-3x2+32)2(-x2+16)12
x(-3x2+32)2(-x2+16)12
Step 28.4
Factor -1 out of -3x2.
x(-(3x2)+32)2(-x2+16)12
Step 28.5
Rewrite 32 as -1(-32).
x(-(3x2)-1(-32))2(-x2+16)12
Step 28.6
Factor -1 out of -(3x2)-1(-32).
x(-(3x2-32))2(-x2+16)12
Step 28.7
Rewrite -(3x2-32) as -1(3x2-32).
x(-1(3x2-32))2(-x2+16)12
Step 28.8
Move the negative in front of the fraction.
-x(3x2-32)2(-x2+16)12
-x(3x2-32)2(-x2+16)12
 [x2  12  π  xdx ]