Calculus Examples

Evaluate the Integral integral of (9x+4)^2 with respect to x
(9x+4)2dx(9x+4)2dx
Step 1
Let u=9x+4u=9x+4. Then du=9dxdu=9dx, so 19du=dx19du=dx. Rewrite using uu and dduu.
Tap for more steps...
Step 1.1
Let u=9x+4u=9x+4. Find dudxdudx.
Tap for more steps...
Step 1.1.1
Differentiate 9x+49x+4.
ddx[9x+4]ddx[9x+4]
Step 1.1.2
By the Sum Rule, the derivative of 9x+49x+4 with respect to xx is ddx[9x]+ddx[4]ddx[9x]+ddx[4].
ddx[9x]+ddx[4]ddx[9x]+ddx[4]
Step 1.1.3
Evaluate ddx[9x]ddx[9x].
Tap for more steps...
Step 1.1.3.1
Since 99 is constant with respect to xx, the derivative of 9x9x with respect to xx is 9ddx[x]9ddx[x].
9ddx[x]+ddx[4]
Step 1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
91+ddx[4]
Step 1.1.3.3
Multiply 9 by 1.
9+ddx[4]
9+ddx[4]
Step 1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.4.1
Since 4 is constant with respect to x, the derivative of 4 with respect to x is 0.
9+0
Step 1.1.4.2
Add 9 and 0.
9
9
9
Step 1.2
Rewrite the problem using u and du.
u219du
u219du
Step 2
Combine u2 and 19.
u29du
Step 3
Since 19 is constant with respect to u, move 19 out of the integral.
19u2du
Step 4
By the Power Rule, the integral of u2 with respect to u is 13u3.
19(13u3+C)
Step 5
Simplify.
Tap for more steps...
Step 5.1
Rewrite 19(13u3+C) as 1913u3+C.
1913u3+C
Step 5.2
Simplify.
Tap for more steps...
Step 5.2.1
Multiply 19 by 13.
193u3+C
Step 5.2.2
Multiply 9 by 3.
127u3+C
127u3+C
127u3+C
Step 6
Replace all occurrences of u with 9x+4.
127(9x+4)3+C
 [x2  12  π  xdx ]