Enter a problem...
Calculus Examples
∫sin2(θ)dθ
Step 1
Use the half-angle formula to rewrite sin2(θ) as 1-cos(2θ)2.
∫1-cos(2θ)2dθ
Step 2
Since 12 is constant with respect to θ, move 12 out of the integral.
12∫1-cos(2θ)dθ
Step 3
Split the single integral into multiple integrals.
12(∫dθ+∫-cos(2θ)dθ)
Step 4
Apply the constant rule.
12(θ+C+∫-cos(2θ)dθ)
Step 5
Since -1 is constant with respect to θ, move -1 out of the integral.
12(θ+C-∫cos(2θ)dθ)
Step 6
Step 6.1
Let u=2θ. Find dudθ.
Step 6.1.1
Differentiate 2θ.
ddθ[2θ]
Step 6.1.2
Since 2 is constant with respect to θ, the derivative of 2θ with respect to θ is 2ddθ[θ].
2ddθ[θ]
Step 6.1.3
Differentiate using the Power Rule which states that ddθ[θn] is nθn-1 where n=1.
2⋅1
Step 6.1.4
Multiply 2 by 1.
2
2
Step 6.2
Rewrite the problem using u and du.
12(θ+C-∫cos(u)12du)
12(θ+C-∫cos(u)12du)
Step 7
Combine cos(u) and 12.
12(θ+C-∫cos(u)2du)
Step 8
Since 12 is constant with respect to u, move 12 out of the integral.
12(θ+C-(12∫cos(u)du))
Step 9
The integral of cos(u) with respect to u is sin(u).
12(θ+C-12(sin(u)+C))
Step 10
Simplify.
12(θ-12sin(u))+C
Step 11
Replace all occurrences of u with 2θ.
12(θ-12sin(2θ))+C
Step 12
Step 12.1
Combine sin(2θ) and 12.
12(θ-sin(2θ)2)+C
Step 12.2
Apply the distributive property.
12θ+12(-sin(2θ)2)+C
Step 12.3
Combine 12 and θ.
θ2+12(-sin(2θ)2)+C
Step 12.4
Multiply 12(-sin(2θ)2).
Step 12.4.1
Multiply 12 by sin(2θ)2.
θ2-sin(2θ)2⋅2+C
Step 12.4.2
Multiply 2 by 2.
θ2-sin(2θ)4+C
θ2-sin(2θ)4+C
θ2-sin(2θ)4+C
Step 13
Reorder terms.
12θ-14sin(2θ)+C