Calculus Examples

Find the Derivative - d/dx 6/x-2/(x^3)+1/(x^4)
6x-2x3+1x4
Step 1
By the Sum Rule, the derivative of 6x-2x3+1x4 with respect to x is ddx[6x]+ddx[-2x3]+ddx[1x4].
ddx[6x]+ddx[-2x3]+ddx[1x4]
Step 2
Evaluate ddx[6x].
Tap for more steps...
Step 2.1
Since 6 is constant with respect to x, the derivative of 6x with respect to x is 6ddx[1x].
6ddx[1x]+ddx[-2x3]+ddx[1x4]
Step 2.2
Rewrite 1x as x-1.
6ddx[x-1]+ddx[-2x3]+ddx[1x4]
Step 2.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=-1.
6(-x-2)+ddx[-2x3]+ddx[1x4]
Step 2.4
Multiply -1 by 6.
-6x-2+ddx[-2x3]+ddx[1x4]
-6x-2+ddx[-2x3]+ddx[1x4]
Step 3
Evaluate ddx[-2x3].
Tap for more steps...
Step 3.1
Since -2 is constant with respect to x, the derivative of -2x3 with respect to x is -2ddx[1x3].
-6x-2-2ddx[1x3]+ddx[1x4]
Step 3.2
Rewrite 1x3 as (x3)-1.
-6x-2-2ddx[(x3)-1]+ddx[1x4]
Step 3.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x-1 and g(x)=x3.
Tap for more steps...
Step 3.3.1
To apply the Chain Rule, set u1 as x3.
-6x-2-2(ddu1[u1-1]ddx[x3])+ddx[1x4]
Step 3.3.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=-1.
-6x-2-2(-u1-2ddx[x3])+ddx[1x4]
Step 3.3.3
Replace all occurrences of u1 with x3.
-6x-2-2(-(x3)-2ddx[x3])+ddx[1x4]
-6x-2-2(-(x3)-2ddx[x3])+ddx[1x4]
Step 3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
-6x-2-2(-(x3)-2(3x2))+ddx[1x4]
Step 3.5
Multiply the exponents in (x3)-2.
Tap for more steps...
Step 3.5.1
Apply the power rule and multiply exponents, (am)n=amn.
-6x-2-2(-x3-2(3x2))+ddx[1x4]
Step 3.5.2
Multiply 3 by -2.
-6x-2-2(-x-6(3x2))+ddx[1x4]
-6x-2-2(-x-6(3x2))+ddx[1x4]
Step 3.6
Multiply 3 by -1.
-6x-2-2(-3x-6x2)+ddx[1x4]
Step 3.7
Multiply x-6 by x2 by adding the exponents.
Tap for more steps...
Step 3.7.1
Move x2.
-6x-2-2(-3(x2x-6))+ddx[1x4]
Step 3.7.2
Use the power rule aman=am+n to combine exponents.
-6x-2-2(-3x2-6)+ddx[1x4]
Step 3.7.3
Subtract 6 from 2.
-6x-2-2(-3x-4)+ddx[1x4]
-6x-2-2(-3x-4)+ddx[1x4]
Step 3.8
Multiply -3 by -2.
-6x-2+6x-4+ddx[1x4]
-6x-2+6x-4+ddx[1x4]
Step 4
Evaluate ddx[1x4].
Tap for more steps...
Step 4.1
Rewrite 1x4 as (x4)-1.
-6x-2+6x-4+ddx[(x4)-1]
Step 4.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x-1 and g(x)=x4.
Tap for more steps...
Step 4.2.1
To apply the Chain Rule, set u2 as x4.
-6x-2+6x-4+ddu2[u2-1]ddx[x4]
Step 4.2.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=-1.
-6x-2+6x-4-u2-2ddx[x4]
Step 4.2.3
Replace all occurrences of u2 with x4.
-6x-2+6x-4-(x4)-2ddx[x4]
-6x-2+6x-4-(x4)-2ddx[x4]
Step 4.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
-6x-2+6x-4-(x4)-2(4x3)
Step 4.4
Multiply the exponents in (x4)-2.
Tap for more steps...
Step 4.4.1
Apply the power rule and multiply exponents, (am)n=amn.
-6x-2+6x-4-x4-2(4x3)
Step 4.4.2
Multiply 4 by -2.
-6x-2+6x-4-x-8(4x3)
-6x-2+6x-4-x-8(4x3)
Step 4.5
Multiply 4 by -1.
-6x-2+6x-4-4x-8x3
Step 4.6
Multiply x-8 by x3 by adding the exponents.
Tap for more steps...
Step 4.6.1
Move x3.
-6x-2+6x-4-4(x3x-8)
Step 4.6.2
Use the power rule aman=am+n to combine exponents.
-6x-2+6x-4-4x3-8
Step 4.6.3
Subtract 8 from 3.
-6x-2+6x-4-4x-5
-6x-2+6x-4-4x-5
-6x-2+6x-4-4x-5
Step 5
Simplify.
Tap for more steps...
Step 5.1
Rewrite the expression using the negative exponent rule b-n=1bn.
-61x2+6x-4-4x-5
Step 5.2
Rewrite the expression using the negative exponent rule b-n=1bn.
-61x2+61x4-4x-5
Step 5.3
Rewrite the expression using the negative exponent rule b-n=1bn.
-61x2+61x4-41x5
Step 5.4
Combine terms.
Tap for more steps...
Step 5.4.1
Combine -6 and 1x2.
-6x2+61x4-41x5
Step 5.4.2
Move the negative in front of the fraction.
-6x2+61x4-41x5
Step 5.4.3
Combine 6 and 1x4.
-6x2+6x4-41x5
Step 5.4.4
Combine -4 and 1x5.
-6x2+6x4+-4x5
Step 5.4.5
Move the negative in front of the fraction.
-6x2+6x4-4x5
-6x2+6x4-4x5
-6x2+6x4-4x5
6x-2x3+1x4
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]