Calculus Examples

Find the Integral tan(x)^2
tan2(x)
Step 1
Using the Pythagorean Identity, rewrite tan2(x) as -1+sec2(x).
-1+sec2(x)dx
Step 2
Split the single integral into multiple integrals.
-1dx+sec2(x)dx
Step 3
Apply the constant rule.
-x+C+sec2(x)dx
Step 4
Since the derivative of tan(x) is sec2(x), the integral of sec2(x) is tan(x).
-x+C+tan(x)+C
Step 5
Simplify.
-x+tan(x)+C
 [x2  12  π  xdx ]