Calculus Examples

Evaluate the Integral integral of (e^(1/x))/(x^2) with respect to x
e1xx2dx
Step 1
Let u=1x. Then du=-1x2dx, so -du=1x2dx. Rewrite using u and du.
Tap for more steps...
Step 1.1
Let u=1x. Find dudx.
Tap for more steps...
Step 1.1.1
Differentiate 1x.
ddx[1x]
Step 1.1.2
Rewrite 1x as x-1.
ddx[x-1]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=-1.
-x-2
Step 1.1.4
Rewrite the expression using the negative exponent rule b-n=1bn.
-1x2
-1x2
Step 1.2
Rewrite the problem using u and du.
-eudu
-eudu
Step 2
Since -1 is constant with respect to u, move -1 out of the integral.
-eudu
Step 3
The integral of eu with respect to u is eu.
-(eu+C)
Step 4
Simplify.
-eu+C
Step 5
Replace all occurrences of u with 1x.
-e1x+C
e1xx2dx
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]