Enter a problem...
Calculus Examples
∫(9-2017x2⋅16+65√x+12e4x-5x)dx∫(9−2017x2⋅16+65√x+12e4x−5x)dx
Step 1
Remove parentheses.
∫9-2017x2⋅16+65√x+12e4x-5xdx∫9−2017x2⋅16+65√x+12e4x−5xdx
Step 2
Multiply 1616 by -2017−2017.
∫9-32272x2+65√x+12e4x-5xdx∫9−32272x2+65√x+12e4x−5xdx
Step 3
Split the single integral into multiple integrals.
∫9dx+∫-32272x2dx+∫65√xdx+∫12e4xdx+∫-5xdx∫9dx+∫−32272x2dx+∫65√xdx+∫12e4xdx+∫−5xdx
Step 4
Apply the constant rule.
9x+C+∫-32272x2dx+∫65√xdx+∫12e4xdx+∫-5xdx9x+C+∫−32272x2dx+∫65√xdx+∫12e4xdx+∫−5xdx
Step 5
Since -32272−32272 is constant with respect to xx, move -32272−32272 out of the integral.
9x+C-32272∫x2dx+∫65√xdx+∫12e4xdx+∫-5xdx9x+C−32272∫x2dx+∫65√xdx+∫12e4xdx+∫−5xdx
Step 6
By the Power Rule, the integral of x2x2 with respect to xx is 13x313x3.
9x+C-32272(13x3+C)+∫65√xdx+∫12e4xdx+∫-5xdx9x+C−32272(13x3+C)+∫65√xdx+∫12e4xdx+∫−5xdx
Step 7
Since 66 is constant with respect to xx, move 66 out of the integral.
9x+C-32272(13x3+C)+6∫5√xdx+∫12e4xdx+∫-5xdx9x+C−32272(13x3+C)+6∫5√xdx+∫12e4xdx+∫−5xdx
Step 8
Use n√ax=axnn√ax=axn to rewrite 5√x5√x as x15x15.
9x+C-32272(13x3+C)+6∫x15dx+∫12e4xdx+∫-5xdx9x+C−32272(13x3+C)+6∫x15dx+∫12e4xdx+∫−5xdx
Step 9
By the Power Rule, the integral of x15x15 with respect to xx is 56x6556x65.
9x+C-32272(13x3+C)+6(56x65+C)+∫12e4xdx+∫-5xdx9x+C−32272(13x3+C)+6(56x65+C)+∫12e4xdx+∫−5xdx
Step 10
Since 1212 is constant with respect to xx, move 1212 out of the integral.
9x+C-32272(13x3+C)+6(56x65+C)+12∫e4xdx+∫-5xdx9x+C−32272(13x3+C)+6(56x65+C)+12∫e4xdx+∫−5xdx
Step 11
Step 11.1
Let u=4xu=4x. Find dudxdudx.
Step 11.1.1
Differentiate 4x4x.
ddx[4x]ddx[4x]
Step 11.1.2
Since 44 is constant with respect to xx, the derivative of 4x4x with respect to xx is 4ddx[x]4ddx[x].
4ddx[x]4ddx[x]
Step 11.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
4⋅14⋅1
Step 11.1.4
Multiply 44 by 11.
44
44
Step 11.2
Rewrite the problem using uu and dudu.
9x+C-32272(13x3+C)+6(56x65+C)+12∫eu14du+∫-5xdx9x+C−32272(13x3+C)+6(56x65+C)+12∫eu14du+∫−5xdx
9x+C-32272(13x3+C)+6(56x65+C)+12∫eu14du+∫-5xdx9x+C−32272(13x3+C)+6(56x65+C)+12∫eu14du+∫−5xdx
Step 12
Since 1414 is constant with respect to uu, move 1414 out of the integral.
9x+C-32272(13x3+C)+6(56x65+C)+12(14∫eudu)+∫-5xdx9x+C−32272(13x3+C)+6(56x65+C)+12(14∫eudu)+∫−5xdx
Step 13
Step 13.1
Combine 1313 and x3x3.
9x+C-32272(x33+C)+6(56x65+C)+12(14∫eudu)+∫-5xdx9x+C−32272(x33+C)+6(56x65+C)+12(14∫eudu)+∫−5xdx
Step 13.2
Combine 5656 and x65x65.
9x+C-32272(x33+C)+6(5x656+C)+12(14∫eudu)+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+12(14∫eudu)+∫−5xdx
9x+C-32272(x33+C)+6(5x656+C)+12(14∫eudu)+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+12(14∫eudu)+∫−5xdx
Step 14
The integral of eueu with respect to uu is eueu.
9x+C-32272(x33+C)+6(5x656+C)+12(14(eu+C))+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+12(14(eu+C))+∫−5xdx
Step 15
Step 15.1
Combine 1414 and 1212.
9x+C-32272(x33+C)+6(5x656+C)+124(eu+C)+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+124(eu+C)+∫−5xdx
Step 15.2
Cancel the common factor of 1212 and 44.
Step 15.2.1
Factor 44 out of 1212.
9x+C-32272(x33+C)+6(5x656+C)+4⋅34(eu+C)+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+4⋅34(eu+C)+∫−5xdx
Step 15.2.2
Cancel the common factors.
Step 15.2.2.1
Factor 44 out of 44.
9x+C-32272(x33+C)+6(5x656+C)+4⋅34(1)(eu+C)+∫-5xdx9x+C−32272(x33+C)+6(5x656+C)+4⋅34(1)(eu+C)+∫−5xdx
Step 15.2.2.2
Cancel the common factor.
9x+C-32272(x33+C)+6(5x656+C)+4⋅34⋅1(eu+C)+∫-5xdx
Step 15.2.2.3
Rewrite the expression.
9x+C-32272(x33+C)+6(5x656+C)+31(eu+C)+∫-5xdx
Step 15.2.2.4
Divide 3 by 1.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+∫-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+∫-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+∫-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+∫-5xdx
Step 16
Since -1 is constant with respect to x, move -1 out of the integral.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-∫5xdx
Step 17
Since 5 is constant with respect to x, move 5 out of the integral.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-(5∫1xdx)
Step 18
Multiply 5 by -1.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-5∫1xdx
Step 19
The integral of 1x with respect to x is ln(|x|).
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-5(ln(|x|)+C)
Step 20
Simplify.
9x-32272x33+5x65+3eu-5ln(|x|)+C
Step 21
Replace all occurrences of u with 4x.
9x-32272x33+5x65+3e4x-5ln(|x|)+C
Step 22
Reorder terms.
9x-322723x3+5x65+3e4x-5ln(|x|)+C