Calculus Examples

Evaluate the Integral integral of (9-2017x^2*16+6 fifth root of x+12e^(4x)-5/x) with respect to x
(9-2017x216+65x+12e4x-5x)dx(92017x216+65x+12e4x5x)dx
Step 1
Remove parentheses.
9-2017x216+65x+12e4x-5xdx92017x216+65x+12e4x5xdx
Step 2
Multiply 1616 by -20172017.
9-32272x2+65x+12e4x-5xdx932272x2+65x+12e4x5xdx
Step 3
Split the single integral into multiple integrals.
9dx+-32272x2dx+65xdx+12e4xdx+-5xdx9dx+32272x2dx+65xdx+12e4xdx+5xdx
Step 4
Apply the constant rule.
9x+C+-32272x2dx+65xdx+12e4xdx+-5xdx9x+C+32272x2dx+65xdx+12e4xdx+5xdx
Step 5
Since -3227232272 is constant with respect to xx, move -3227232272 out of the integral.
9x+C-32272x2dx+65xdx+12e4xdx+-5xdx9x+C32272x2dx+65xdx+12e4xdx+5xdx
Step 6
By the Power Rule, the integral of x2x2 with respect to xx is 13x313x3.
9x+C-32272(13x3+C)+65xdx+12e4xdx+-5xdx9x+C32272(13x3+C)+65xdx+12e4xdx+5xdx
Step 7
Since 66 is constant with respect to xx, move 66 out of the integral.
9x+C-32272(13x3+C)+65xdx+12e4xdx+-5xdx9x+C32272(13x3+C)+65xdx+12e4xdx+5xdx
Step 8
Use nax=axnnax=axn to rewrite 5x5x as x15x15.
9x+C-32272(13x3+C)+6x15dx+12e4xdx+-5xdx9x+C32272(13x3+C)+6x15dx+12e4xdx+5xdx
Step 9
By the Power Rule, the integral of x15x15 with respect to xx is 56x6556x65.
9x+C-32272(13x3+C)+6(56x65+C)+12e4xdx+-5xdx9x+C32272(13x3+C)+6(56x65+C)+12e4xdx+5xdx
Step 10
Since 1212 is constant with respect to xx, move 1212 out of the integral.
9x+C-32272(13x3+C)+6(56x65+C)+12e4xdx+-5xdx9x+C32272(13x3+C)+6(56x65+C)+12e4xdx+5xdx
Step 11
Let u=4xu=4x. Then du=4dxdu=4dx, so 14du=dx14du=dx. Rewrite using uu and dduu.
Tap for more steps...
Step 11.1
Let u=4xu=4x. Find dudxdudx.
Tap for more steps...
Step 11.1.1
Differentiate 4x4x.
ddx[4x]ddx[4x]
Step 11.1.2
Since 44 is constant with respect to xx, the derivative of 4x4x with respect to xx is 4ddx[x]4ddx[x].
4ddx[x]4ddx[x]
Step 11.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
4141
Step 11.1.4
Multiply 44 by 11.
44
44
Step 11.2
Rewrite the problem using uu and dudu.
9x+C-32272(13x3+C)+6(56x65+C)+12eu14du+-5xdx9x+C32272(13x3+C)+6(56x65+C)+12eu14du+5xdx
9x+C-32272(13x3+C)+6(56x65+C)+12eu14du+-5xdx9x+C32272(13x3+C)+6(56x65+C)+12eu14du+5xdx
Step 12
Since 1414 is constant with respect to uu, move 1414 out of the integral.
9x+C-32272(13x3+C)+6(56x65+C)+12(14eudu)+-5xdx9x+C32272(13x3+C)+6(56x65+C)+12(14eudu)+5xdx
Step 13
Simplify.
Tap for more steps...
Step 13.1
Combine 1313 and x3x3.
9x+C-32272(x33+C)+6(56x65+C)+12(14eudu)+-5xdx9x+C32272(x33+C)+6(56x65+C)+12(14eudu)+5xdx
Step 13.2
Combine 5656 and x65x65.
9x+C-32272(x33+C)+6(5x656+C)+12(14eudu)+-5xdx9x+C32272(x33+C)+6(5x656+C)+12(14eudu)+5xdx
9x+C-32272(x33+C)+6(5x656+C)+12(14eudu)+-5xdx9x+C32272(x33+C)+6(5x656+C)+12(14eudu)+5xdx
Step 14
The integral of eueu with respect to uu is eueu.
9x+C-32272(x33+C)+6(5x656+C)+12(14(eu+C))+-5xdx9x+C32272(x33+C)+6(5x656+C)+12(14(eu+C))+5xdx
Step 15
Simplify.
Tap for more steps...
Step 15.1
Combine 1414 and 1212.
9x+C-32272(x33+C)+6(5x656+C)+124(eu+C)+-5xdx9x+C32272(x33+C)+6(5x656+C)+124(eu+C)+5xdx
Step 15.2
Cancel the common factor of 1212 and 44.
Tap for more steps...
Step 15.2.1
Factor 44 out of 1212.
9x+C-32272(x33+C)+6(5x656+C)+434(eu+C)+-5xdx9x+C32272(x33+C)+6(5x656+C)+434(eu+C)+5xdx
Step 15.2.2
Cancel the common factors.
Tap for more steps...
Step 15.2.2.1
Factor 44 out of 44.
9x+C-32272(x33+C)+6(5x656+C)+434(1)(eu+C)+-5xdx9x+C32272(x33+C)+6(5x656+C)+434(1)(eu+C)+5xdx
Step 15.2.2.2
Cancel the common factor.
9x+C-32272(x33+C)+6(5x656+C)+4341(eu+C)+-5xdx
Step 15.2.2.3
Rewrite the expression.
9x+C-32272(x33+C)+6(5x656+C)+31(eu+C)+-5xdx
Step 15.2.2.4
Divide 3 by 1.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+-5xdx
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)+-5xdx
Step 16
Since -1 is constant with respect to x, move -1 out of the integral.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-5xdx
Step 17
Since 5 is constant with respect to x, move 5 out of the integral.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-(51xdx)
Step 18
Multiply 5 by -1.
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-51xdx
Step 19
The integral of 1x with respect to x is ln(|x|).
9x+C-32272(x33+C)+6(5x656+C)+3(eu+C)-5(ln(|x|)+C)
Step 20
Simplify.
9x-32272x33+5x65+3eu-5ln(|x|)+C
Step 21
Replace all occurrences of u with 4x.
9x-32272x33+5x65+3e4x-5ln(|x|)+C
Step 22
Reorder terms.
9x-322723x3+5x65+3e4x-5ln(|x|)+C
 [x2  12  π  xdx ]