Enter a problem...
Calculus Examples
∫tan3(x)dx
Step 1
Factor out tan2(x).
∫tan2(x)tan(x)dx
Step 2
Using the Pythagorean Identity, rewrite tan2(x) as −1+sec2(x).
∫(−1+sec2(x))tan(x)dx
Step 3
Apply the distributive property.
∫−1tan(x)+sec2(x)tan(x)dx
Step 4
Split the single integral into multiple integrals.
∫−1tan(x)dx+∫sec2(x)tan(x)dx
Step 5
Since −1 is constant with respect to x, move −1 out of the integral.
−∫tan(x)dx+∫sec2(x)tan(x)dx
Step 6
The integral of tan(x) with respect to x is ln(|sec(x)|).
−(ln(|sec(x)|)+C)+∫sec2(x)tan(x)dx
Step 7
Step 7.1
Let u=sec(x). Find dudx.
Step 7.1.1
Differentiate sec(x).
ddx[sec(x)]
Step 7.1.2
The derivative of sec(x) with respect to x is sec(x)tan(x).
sec(x)tan(x)
sec(x)tan(x)
Step 7.2
Rewrite the problem using u and du.
−(ln(|sec(x)|)+C)+∫udu
−(ln(|sec(x)|)+C)+∫udu
Step 8
By the Power Rule, the integral of u with respect to u is 12u2.
−(ln(|sec(x)|)+C)+12u2+C
Step 9
Simplify.
−ln(|sec(x)|)+12u2+C
Step 10
Replace all occurrences of u with sec(x).
−ln(|sec(x)|)+12sec2(x)+C