Calculus Examples

Evaluate the Integral integral of tan(x)^3 with respect to x
tan3(x)dx
Step 1
Factor out tan2(x).
tan2(x)tan(x)dx
Step 2
Using the Pythagorean Identity, rewrite tan2(x) as 1+sec2(x).
(1+sec2(x))tan(x)dx
Step 3
Apply the distributive property.
1tan(x)+sec2(x)tan(x)dx
Step 4
Split the single integral into multiple integrals.
1tan(x)dx+sec2(x)tan(x)dx
Step 5
Since 1 is constant with respect to x, move 1 out of the integral.
tan(x)dx+sec2(x)tan(x)dx
Step 6
The integral of tan(x) with respect to x is ln(|sec(x)|).
(ln(|sec(x)|)+C)+sec2(x)tan(x)dx
Step 7
Let u=sec(x). Then du=sec(x)tan(x)dx, so 1sec(x)tan(x)du=dx. Rewrite using u and du.
Tap for more steps...
Step 7.1
Let u=sec(x). Find dudx.
Tap for more steps...
Step 7.1.1
Differentiate sec(x).
ddx[sec(x)]
Step 7.1.2
The derivative of sec(x) with respect to x is sec(x)tan(x).
sec(x)tan(x)
sec(x)tan(x)
Step 7.2
Rewrite the problem using u and du.
(ln(|sec(x)|)+C)+udu
(ln(|sec(x)|)+C)+udu
Step 8
By the Power Rule, the integral of u with respect to u is 12u2.
(ln(|sec(x)|)+C)+12u2+C
Step 9
Simplify.
ln(|sec(x)|)+12u2+C
Step 10
Replace all occurrences of u with sec(x).
ln(|sec(x)|)+12sec2(x)+C
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 x2  12  π  xdx