Calculus Examples

Find the Derivative - d/dx 1/(x^10)
1x101x10
Step 1
Apply basic rules of exponents.
Tap for more steps...
Step 1.1
Rewrite 1x101x10 as (x10)-1(x10)1.
ddx[(x10)-1]ddx[(x10)1]
Step 1.2
Multiply the exponents in (x10)-1(x10)1.
Tap for more steps...
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ddx[x10-1]ddx[x101]
Step 1.2.2
Multiply 1010 by -11.
ddx[x-10]ddx[x10]
ddx[x-10]ddx[x10]
ddx[x-10]ddx[x10]
Step 2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-10n=10.
-10x-1110x11
Step 3
Simplify.
Tap for more steps...
Step 3.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
-101x11101x11
Step 3.2
Combine terms.
Tap for more steps...
Step 3.2.1
Combine -1010 and 1x111x11.
-10x1110x11
Step 3.2.2
Move the negative in front of the fraction.
-10x1110x11
-10x1110x11
-10x1110x11
 [x2  12  π  xdx ]  x2  12  π  xdx