Enter a problem...
Calculus Examples
1x101x10
Step 1
Step 1.1
Rewrite 1x101x10 as (x10)-1(x10)−1.
ddx[(x10)-1]ddx[(x10)−1]
Step 1.2
Multiply the exponents in (x10)-1(x10)−1.
Step 1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ddx[x10⋅-1]ddx[x10⋅−1]
Step 1.2.2
Multiply 1010 by -1−1.
ddx[x-10]ddx[x−10]
ddx[x-10]ddx[x−10]
ddx[x-10]ddx[x−10]
Step 2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=-10n=−10.
-10x-11−10x−11
Step 3
Step 3.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
-101x11−101x11
Step 3.2
Combine terms.
Step 3.2.1
Combine -10−10 and 1x111x11.
-10x11−10x11
Step 3.2.2
Move the negative in front of the fraction.
-10x11−10x11
-10x11−10x11
-10x11−10x11