Calculus Examples

Find the Integral cos(x)^2
cos2(x)
Step 1
Use the half-angle formula to rewrite cos2(x) as 1+cos(2x)2.
1+cos(2x)2dx
Step 2
Since 12 is constant with respect to x, move 12 out of the integral.
121+cos(2x)dx
Step 3
Split the single integral into multiple integrals.
12(dx+cos(2x)dx)
Step 4
Apply the constant rule.
12(x+C+cos(2x)dx)
Step 5
Let u=2x. Then du=2dx, so 12du=dx. Rewrite using u and du.
Tap for more steps...
Step 5.1
Let u=2x. Find dudx.
Tap for more steps...
Step 5.1.1
Differentiate 2x.
ddx[2x]
Step 5.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 5.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
21
Step 5.1.4
Multiply 2 by 1.
2
2
Step 5.2
Rewrite the problem using u and du.
12(x+C+cos(u)12du)
12(x+C+cos(u)12du)
Step 6
Combine cos(u) and 12.
12(x+C+cos(u)2du)
Step 7
Since 12 is constant with respect to u, move 12 out of the integral.
12(x+C+12cos(u)du)
Step 8
The integral of cos(u) with respect to u is sin(u).
12(x+C+12(sin(u)+C))
Step 9
Simplify.
12(x+12sin(u))+C
Step 10
Replace all occurrences of u with 2x.
12(x+12sin(2x))+C
Step 11
Simplify.
Tap for more steps...
Step 11.1
Combine 12 and sin(2x).
12(x+sin(2x)2)+C
Step 11.2
Apply the distributive property.
12x+12sin(2x)2+C
Step 11.3
Combine 12 and x.
x2+12sin(2x)2+C
Step 11.4
Multiply 12sin(2x)2.
Tap for more steps...
Step 11.4.1
Multiply 12 by sin(2x)2.
x2+sin(2x)22+C
Step 11.4.2
Multiply 2 by 2.
x2+sin(2x)4+C
x2+sin(2x)4+C
x2+sin(2x)4+C
Step 12
Reorder terms.
12x+14sin(2x)+C
cos2x
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]