Calculus Examples

Find the Derivative - d/dx (x+x^-1)^3
(x+x-1)3(x+x1)3
Step 1
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x)f'(g(x))g'(x) where f(x)=x3f(x)=x3 and g(x)=x+x-1g(x)=x+x1.
Tap for more steps...
Step 1.1
To apply the Chain Rule, set uu as x+x-1x+x1.
ddu[u3]ddx[x+x-1]ddu[u3]ddx[x+x1]
Step 1.2
Differentiate using the Power Rule which states that ddu[un]ddu[un] is nun-1nun1 where n=3n=3.
3u2ddx[x+x-1]3u2ddx[x+x1]
Step 1.3
Replace all occurrences of uu with x+x-1x+x1.
3(x+x-1)2ddx[x+x-1]3(x+x1)2ddx[x+x1]
3(x+x-1)2ddx[x+x-1]3(x+x1)2ddx[x+x1]
Step 2
Differentiate.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of x+x-1x+x1 with respect to xx is ddx[x]+ddx[x-1]ddx[x]+ddx[x1].
3(x+x-1)2(ddx[x]+ddx[x-1])3(x+x1)2(ddx[x]+ddx[x1])
Step 2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
3(x+x-1)2(1+ddx[x-1])3(x+x1)2(1+ddx[x1])
Step 2.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-1n=1.
3(x+x-1)2(1-x-2)3(x+x1)2(1x2)
3(x+x-1)2(1-x-2)3(x+x1)2(1x2)
Step 3
Simplify.
Tap for more steps...
Step 3.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
3(x+1x)2(1-x-2)3(x+1x)2(1x2)
Step 3.2
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
3(x+1x)2(1-1x2)3(x+1x)2(11x2)
Step 3.3
Rewrite (x+1x)2(x+1x)2 as (x+1x)(x+1x)(x+1x)(x+1x).
3((x+1x)(x+1x))(1-1x2)3((x+1x)(x+1x))(11x2)
Step 3.4
Expand (x+1x)(x+1x)(x+1x)(x+1x) using the FOIL Method.
Tap for more steps...
Step 3.4.1
Apply the distributive property.
3(x(x+1x)+1x(x+1x))(1-1x2)3(x(x+1x)+1x(x+1x))(11x2)
Step 3.4.2
Apply the distributive property.
3(xx+x1x+1x(x+1x))(1-1x2)3(xx+x1x+1x(x+1x))(11x2)
Step 3.4.3
Apply the distributive property.
3(xx+x1x+1xx+1x1x)(1-1x2)3(xx+x1x+1xx+1x1x)(11x2)
3(xx+x1x+1xx+1x1x)(1-1x2)3(xx+x1x+1xx+1x1x)(11x2)
Step 3.5
Simplify and combine like terms.
Tap for more steps...
Step 3.5.1
Simplify each term.
Tap for more steps...
Step 3.5.1.1
Multiply xx by xx.
3(x2+x1x+1xx+1x1x)(1-1x2)3(x2+x1x+1xx+1x1x)(11x2)
Step 3.5.1.2
Cancel the common factor of xx.
Tap for more steps...
Step 3.5.1.2.1
Cancel the common factor.
3(x2+x1x+1xx+1x1x)(1-1x2)
Step 3.5.1.2.2
Rewrite the expression.
3(x2+1+1xx+1x1x)(1-1x2)
3(x2+1+1xx+1x1x)(1-1x2)
Step 3.5.1.3
Cancel the common factor of x.
Tap for more steps...
Step 3.5.1.3.1
Cancel the common factor.
3(x2+1+1xx+1x1x)(1-1x2)
Step 3.5.1.3.2
Rewrite the expression.
3(x2+1+1+1x1x)(1-1x2)
3(x2+1+1+1x1x)(1-1x2)
Step 3.5.1.4
Multiply 1x1x.
Tap for more steps...
Step 3.5.1.4.1
Multiply 1x by 1x.
3(x2+1+1+1xx)(1-1x2)
Step 3.5.1.4.2
Raise x to the power of 1.
3(x2+1+1+1x1x)(1-1x2)
Step 3.5.1.4.3
Raise x to the power of 1.
3(x2+1+1+1x1x1)(1-1x2)
Step 3.5.1.4.4
Use the power rule aman=am+n to combine exponents.
3(x2+1+1+1x1+1)(1-1x2)
Step 3.5.1.4.5
Add 1 and 1.
3(x2+1+1+1x2)(1-1x2)
3(x2+1+1+1x2)(1-1x2)
3(x2+1+1+1x2)(1-1x2)
Step 3.5.2
Add 1 and 1.
3(x2+2+1x2)(1-1x2)
3(x2+2+1x2)(1-1x2)
Step 3.6
Apply the distributive property.
(3x2+32+31x2)(1-1x2)
Step 3.7
Simplify.
Tap for more steps...
Step 3.7.1
Multiply 3 by 2.
(3x2+6+31x2)(1-1x2)
Step 3.7.2
Combine 3 and 1x2.
(3x2+6+3x2)(1-1x2)
(3x2+6+3x2)(1-1x2)
Step 3.8
Expand (3x2+6+3x2)(1-1x2) by multiplying each term in the first expression by each term in the second expression.
3x21+3x2(-1x2)+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9
Simplify each term.
Tap for more steps...
Step 3.9.1
Multiply 3 by 1.
3x2+3x2(-1x2)+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.2
Cancel the common factor of x2.
Tap for more steps...
Step 3.9.2.1
Move the leading negative in -1x2 into the numerator.
3x2+3x2-1x2+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.2.2
Factor x2 out of 3x2.
3x2+x23-1x2+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.2.3
Cancel the common factor.
3x2+x23-1x2+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.2.4
Rewrite the expression.
3x2+3-1+61+6(-1x2)+3x21+3x2(-1x2)
3x2+3-1+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.3
Multiply 3 by -1.
3x2-3+61+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.4
Multiply 6 by 1.
3x2-3+6+6(-1x2)+3x21+3x2(-1x2)
Step 3.9.5
Multiply 6(-1x2).
Tap for more steps...
Step 3.9.5.1
Multiply -1 by 6.
3x2-3+6-61x2+3x21+3x2(-1x2)
Step 3.9.5.2
Combine -6 and 1x2.
3x2-3+6+-6x2+3x21+3x2(-1x2)
3x2-3+6+-6x2+3x21+3x2(-1x2)
Step 3.9.6
Move the negative in front of the fraction.
3x2-3+6-6x2+3x21+3x2(-1x2)
Step 3.9.7
Multiply 3x2 by 1.
3x2-3+6-6x2+3x2+3x2(-1x2)
Step 3.9.8
Rewrite using the commutative property of multiplication.
3x2-3+6-6x2+3x2-3x21x2
Step 3.9.9
Multiply -3x21x2.
Tap for more steps...
Step 3.9.9.1
Multiply 1x2 by 3x2.
3x2-3+6-6x2+3x2-3x2x2
Step 3.9.9.2
Multiply x2 by x2 by adding the exponents.
Tap for more steps...
Step 3.9.9.2.1
Use the power rule aman=am+n to combine exponents.
3x2-3+6-6x2+3x2-3x2+2
Step 3.9.9.2.2
Add 2 and 2.
3x2-3+6-6x2+3x2-3x4
3x2-3+6-6x2+3x2-3x4
3x2-3+6-6x2+3x2-3x4
3x2-3+6-6x2+3x2-3x4
Step 3.10
Combine the numerators over the common denominator.
3x2-3+6+-6+3x2+-3x4
Step 3.11
Add -6 and 3.
3x2-3+6+-3x2+-3x4
Step 3.12
Simplify each term.
Tap for more steps...
Step 3.12.1
Move the negative in front of the fraction.
3x2-3+6-3x2+-3x4
Step 3.12.2
Move the negative in front of the fraction.
3x2-3+6-3x2-3x4
3x2-3+6-3x2-3x4
Step 3.13
Add -3 and 6.
3x2+3-3x2-3x4
3x2+3-3x2-3x4
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]