Calculus Examples

Evaluate the Integral integral of e^xsin(x) with respect to x
exsin(x)dx
Step 1
Reorder ex and sin(x).
sin(x)exdx
Step 2
Integrate by parts using the formula udv=uv-vdu, where u=sin(x) and dv=ex.
sin(x)ex-excos(x)dx
Step 3
Reorder ex and cos(x).
sin(x)ex-cos(x)exdx
Step 4
Integrate by parts using the formula udv=uv-vdu, where u=cos(x) and dv=ex.
sin(x)ex-(cos(x)ex-ex(-sin(x))dx)
Step 5
Since -1 is constant with respect to x, move -1 out of the integral.
sin(x)ex-(cos(x)ex--ex(sin(x))dx)
Step 6
Simplify by multiplying through.
Tap for more steps...
Step 6.1
Multiply -1 by -1.
sin(x)ex-(cos(x)ex+1ex(sin(x))dx)
Step 6.2
Multiply ex(sin(x))dx by 1.
sin(x)ex-(cos(x)ex+ex(sin(x))dx)
Step 6.3
Apply the distributive property.
sin(x)ex-(cos(x)ex)-ex(sin(x))dx
sin(x)ex-(cos(x)ex)-ex(sin(x))dx
Step 7
Solving for exsin(x)dx, we find that exsin(x)dx = sin(x)ex-(cos(x)ex)2.
sin(x)ex-(cos(x)ex)2+C
Step 8
Rewrite sin(x)ex-cos(x)ex2+C as 12(sin(x)ex-cos(x)ex)+C.
12(sin(x)ex-cos(x)ex)+C
ex sinxdx
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]