Enter a problem...
Calculus Examples
∫10x-4x2-5x+6dx∫10x−4x2−5x+6dx
Step 1
Step 1.1
Decompose the fraction and multiply through by the common denominator.
Step 1.1.1
Factor x2-5x+6x2−5x+6 using the AC method.
Step 1.1.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 66 and whose sum is -5−5.
-3,-2−3,−2
Step 1.1.1.2
Write the factored form using these integers.
x-4(x-3)(x-2)x−4(x−3)(x−2)
x-4(x-3)(x-2)x−4(x−3)(x−2)
Step 1.1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place AA.
Ax-3Ax−3
Step 1.1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place BB.
Ax-3+Bx-2Ax−3+Bx−2
Step 1.1.4
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is (x-3)(x-2)(x−3)(x−2).
(x-4)(x-3)(x-2)(x-3)(x-2)=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2(x−4)(x−3)(x−2)(x−3)(x−2)=(A)(x−3)(x−2)x−3+(B)(x−3)(x−2)x−2
Step 1.1.5
Cancel the common factor of x-3x−3.
Step 1.1.5.1
Cancel the common factor.
(x-4)(x-3)(x-2)(x-3)(x-2)=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
Step 1.1.5.2
Rewrite the expression.
(x-4)(x-2)x-2=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
(x-4)(x-2)x-2=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
Step 1.1.6
Cancel the common factor of x-2.
Step 1.1.6.1
Cancel the common factor.
(x-4)(x-2)x-2=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
Step 1.1.6.2
Divide x-4 by 1.
x-4=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
x-4=(A)(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
Step 1.1.7
Simplify each term.
Step 1.1.7.1
Cancel the common factor of x-3.
Step 1.1.7.1.1
Cancel the common factor.
x-4=A(x-3)(x-2)x-3+(B)(x-3)(x-2)x-2
Step 1.1.7.1.2
Divide (A)(x-2) by 1.
x-4=(A)(x-2)+(B)(x-3)(x-2)x-2
x-4=(A)(x-2)+(B)(x-3)(x-2)x-2
Step 1.1.7.2
Apply the distributive property.
x-4=Ax+A⋅-2+(B)(x-3)(x-2)x-2
Step 1.1.7.3
Move -2 to the left of A.
x-4=Ax-2⋅A+(B)(x-3)(x-2)x-2
Step 1.1.7.4
Cancel the common factor of x-2.
Step 1.1.7.4.1
Cancel the common factor.
x-4=Ax-2A+(B)(x-3)(x-2)x-2
Step 1.1.7.4.2
Divide (B)(x-3) by 1.
x-4=Ax-2A+(B)(x-3)
x-4=Ax-2A+(B)(x-3)
Step 1.1.7.5
Apply the distributive property.
x-4=Ax-2A+Bx+B⋅-3
Step 1.1.7.6
Move -3 to the left of B.
x-4=Ax-2A+Bx-3B
x-4=Ax-2A+Bx-3B
Step 1.1.8
Move -2A.
x-4=Ax+Bx-2A-3B
x-4=Ax+Bx-2A-3B
Step 1.2
Create equations for the partial fraction variables and use them to set up a system of equations.
Step 1.2.1
Create an equation for the partial fraction variables by equating the coefficients of x from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
1=A+B
Step 1.2.2
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing x. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
-4=-2A-3B
Step 1.2.3
Set up the system of equations to find the coefficients of the partial fractions.
1=A+B
-4=-2A-3B
1=A+B
-4=-2A-3B
Step 1.3
Solve the system of equations.
Step 1.3.1
Solve for A in 1=A+B.
Step 1.3.1.1
Rewrite the equation as A+B=1.
A+B=1
-4=-2A-3B
Step 1.3.1.2
Subtract B from both sides of the equation.
A=1-B
-4=-2A-3B
A=1-B
-4=-2A-3B
Step 1.3.2
Replace all occurrences of A with 1-B in each equation.
Step 1.3.2.1
Replace all occurrences of A in -4=-2A-3B with 1-B.
-4=-2(1-B)-3B
A=1-B
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify -2(1-B)-3B.
Step 1.3.2.2.1.1
Simplify each term.
Step 1.3.2.2.1.1.1
Apply the distributive property.
-4=-2⋅1-2(-B)-3B
A=1-B
Step 1.3.2.2.1.1.2
Multiply -2 by 1.
-4=-2-2(-B)-3B
A=1-B
Step 1.3.2.2.1.1.3
Multiply -1 by -2.
-4=-2+2B-3B
A=1-B
-4=-2+2B-3B
A=1-B
Step 1.3.2.2.1.2
Subtract 3B from 2B.
-4=-2-B
A=1-B
-4=-2-B
A=1-B
-4=-2-B
A=1-B
-4=-2-B
A=1-B
Step 1.3.3
Solve for B in -4=-2-B.
Step 1.3.3.1
Rewrite the equation as -2-B=-4.
-2-B=-4
A=1-B
Step 1.3.3.2
Move all terms not containing B to the right side of the equation.
Step 1.3.3.2.1
Add 2 to both sides of the equation.
-B=-4+2
A=1-B
Step 1.3.3.2.2
Add -4 and 2.
-B=-2
A=1-B
-B=-2
A=1-B
Step 1.3.3.3
Divide each term in -B=-2 by -1 and simplify.
Step 1.3.3.3.1
Divide each term in -B=-2 by -1.
-B-1=-2-1
A=1-B
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Dividing two negative values results in a positive value.
B1=-2-1
A=1-B
Step 1.3.3.3.2.2
Divide B by 1.
B=-2-1
A=1-B
B=-2-1
A=1-B
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide -2 by -1.
B=2
A=1-B
B=2
A=1-B
B=2
A=1-B
B=2
A=1-B
Step 1.3.4
Replace all occurrences of B with 2 in each equation.
Step 1.3.4.1
Replace all occurrences of B in A=1-B with 2.
A=1-(2)
B=2
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify 1-(2).
Step 1.3.4.2.1.1
Multiply -1 by 2.
A=1-2
B=2
Step 1.3.4.2.1.2
Subtract 2 from 1.
A=-1
B=2
A=-1
B=2
A=-1
B=2
A=-1
B=2
Step 1.3.5
List all of the solutions.
A=-1,B=2
A=-1,B=2
Step 1.4
Replace each of the partial fraction coefficients in Ax-3+Bx-2 with the values found for A and B.
-1x-3+2x-2
Step 1.5
Move the negative in front of the fraction.
∫10-1x-3+2x-2dx
∫10-1x-3+2x-2dx
Step 2
Split the single integral into multiple integrals.
∫10-1x-3dx+∫102x-2dx
Step 3
Since -1 is constant with respect to x, move -1 out of the integral.
-∫101x-3dx+∫102x-2dx
Step 4
Step 4.1
Let u1=x-3. Find du1dx.
Step 4.1.1
Differentiate x-3.
ddx[x-3]
Step 4.1.2
By the Sum Rule, the derivative of x-3 with respect to x is ddx[x]+ddx[-3].
ddx[x]+ddx[-3]
Step 4.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[-3]
Step 4.1.4
Since -3 is constant with respect to x, the derivative of -3 with respect to x is 0.
1+0
Step 4.1.5
Add 1 and 0.
1
1
Step 4.2
Substitute the lower limit in for x in u1=x-3.
ulower=0-3
Step 4.3
Subtract 3 from 0.
ulower=-3
Step 4.4
Substitute the upper limit in for x in u1=x-3.
uupper=1-3
Step 4.5
Subtract 3 from 1.
uupper=-2
Step 4.6
The values found for ulower and uupper will be used to evaluate the definite integral.
ulower=-3
uupper=-2
Step 4.7
Rewrite the problem using u1, du1, and the new limits of integration.
-∫-2-31u1du1+∫102x-2dx
-∫-2-31u1du1+∫102x-2dx
Step 5
The integral of 1u1 with respect to u1 is ln(|u1|).
-(ln(|u1|)]-2-3)+∫102x-2dx
Step 6
Since 2 is constant with respect to x, move 2 out of the integral.
-(ln(|u1|)]-2-3)+2∫101x-2dx
Step 7
Step 7.1
Let u2=x-2. Find du2dx.
Step 7.1.1
Differentiate x-2.
ddx[x-2]
Step 7.1.2
By the Sum Rule, the derivative of x-2 with respect to x is ddx[x]+ddx[-2].
ddx[x]+ddx[-2]
Step 7.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[-2]
Step 7.1.4
Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.
1+0
Step 7.1.5
Add 1 and 0.
1
1
Step 7.2
Substitute the lower limit in for x in u2=x-2.
ulower=0-2
Step 7.3
Subtract 2 from 0.
ulower=-2
Step 7.4
Substitute the upper limit in for x in u2=x-2.
uupper=1-2
Step 7.5
Subtract 2 from 1.
uupper=-1
Step 7.6
The values found for ulower and uupper will be used to evaluate the definite integral.
ulower=-2
uupper=-1
Step 7.7
Rewrite the problem using u2, du2, and the new limits of integration.
-(ln(|u1|)]-2-3)+2∫-1-21u2du2
-(ln(|u1|)]-2-3)+2∫-1-21u2du2
Step 8
The integral of 1u2 with respect to u2 is ln(|u2|).
-(ln(|u1|)]-2-3)+2(ln(|u2|)]-1-2)
Step 9
Step 9.1
Evaluate ln(|u1|) at -2 and at -3.
-((ln(|-2|))-ln(|-3|))+2(ln(|u2|)]-1-2)
Step 9.2
Evaluate ln(|u2|) at -1 and at -2.
-((ln(|-2|))-ln(|-3|))+2((ln(|-1|))-ln(|-2|))
Step 9.3
Remove parentheses.
-(ln(|-2|)-ln(|-3|))+2(ln(|-1|)-ln(|-2|))
-(ln(|-2|)-ln(|-3|))+2(ln(|-1|)-ln(|-2|))
Step 10
Step 10.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
-ln(|-2||-3|)+2(ln(|-1|)-ln(|-2|))
Step 10.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
-ln(|-2||-3|)+2ln(|-1||-2|)
-ln(|-2||-3|)+2ln(|-1||-2|)
Step 11
Step 11.1
The absolute value is the distance between a number and zero. The distance between -2 and 0 is 2.
-ln(2|-3|)+2ln(|-1||-2|)
Step 11.2
The absolute value is the distance between a number and zero. The distance between -3 and 0 is 3.
-ln(23)+2ln(|-1||-2|)
Step 11.3
The absolute value is the distance between a number and zero. The distance between -1 and 0 is 1.
-ln(23)+2ln(1|-2|)
Step 11.4
The absolute value is the distance between a number and zero. The distance between -2 and 0 is 2.
-ln(23)+2ln(12)
-ln(23)+2ln(12)
Step 12
The result can be shown in multiple forms.
Exact Form:
-ln(23)+2ln(12)
Decimal Form:
-0.98082925…
Step 13