Calculus Examples

Find the Derivative - d/dx (x^3-3x^2+4)/(x^2)
x3-3x2+4x2x33x2+4x2
Step 1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x3-3x2+4 and g(x)=x2.
x2ddx[x3-3x2+4]-(x3-3x2+4)ddx[x2](x2)2
Step 2
Differentiate.
Tap for more steps...
Step 2.1
Multiply the exponents in (x2)2.
Tap for more steps...
Step 2.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x2ddx[x3-3x2+4]-(x3-3x2+4)ddx[x2]x22
Step 2.1.2
Multiply 2 by 2.
x2ddx[x3-3x2+4]-(x3-3x2+4)ddx[x2]x4
x2ddx[x3-3x2+4]-(x3-3x2+4)ddx[x2]x4
Step 2.2
By the Sum Rule, the derivative of x3-3x2+4 with respect to x is ddx[x3]+ddx[-3x2]+ddx[4].
x2(ddx[x3]+ddx[-3x2]+ddx[4])-(x3-3x2+4)ddx[x2]x4
Step 2.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
x2(3x2+ddx[-3x2]+ddx[4])-(x3-3x2+4)ddx[x2]x4
Step 2.4
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
x2(3x2-3ddx[x2]+ddx[4])-(x3-3x2+4)ddx[x2]x4
Step 2.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(3x2-3(2x)+ddx[4])-(x3-3x2+4)ddx[x2]x4
Step 2.6
Multiply 2 by -3.
x2(3x2-6x+ddx[4])-(x3-3x2+4)ddx[x2]x4
Step 2.7
Since 4 is constant with respect to x, the derivative of 4 with respect to x is 0.
x2(3x2-6x+0)-(x3-3x2+4)ddx[x2]x4
Step 2.8
Add 3x2-6x and 0.
x2(3x2-6x)-(x3-3x2+4)ddx[x2]x4
Step 2.9
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(3x2-6x)-(x3-3x2+4)(2x)x4
Step 2.10
Simplify with factoring out.
Tap for more steps...
Step 2.10.1
Multiply 2 by -1.
x2(3x2-6x)-2(x3-3x2+4)xx4
Step 2.10.2
Factor x out of x2(3x2-6x)-2(x3-3x2+4)x.
Tap for more steps...
Step 2.10.2.1
Factor x out of x2(3x2-6x).
x(x(3x2-6x))-2(x3-3x2+4)xx4
Step 2.10.2.2
Factor x out of -2(x3-3x2+4)x.
x(x(3x2-6x))+x(-2(x3-3x2+4))x4
Step 2.10.2.3
Factor x out of x(x(3x2-6x))+x(-2(x3-3x2+4)).
x(x(3x2-6x)-2(x3-3x2+4))x4
x(x(3x2-6x)-2(x3-3x2+4))x4
x(x(3x2-6x)-2(x3-3x2+4))x4
x(x(3x2-6x)-2(x3-3x2+4))x4
Step 3
Cancel the common factors.
Tap for more steps...
Step 3.1
Factor x out of x4.
x(x(3x2-6x)-2(x3-3x2+4))xx3
Step 3.2
Cancel the common factor.
x(x(3x2-6x)-2(x3-3x2+4))xx3
Step 3.3
Rewrite the expression.
x(3x2-6x)-2(x3-3x2+4)x3
x(3x2-6x)-2(x3-3x2+4)x3
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
x(3x2)+x(-6x)-2(x3-3x2+4)x3
Step 4.2
Apply the distributive property.
x(3x2)+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3
Simplify the numerator.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Rewrite using the commutative property of multiplication.
3xx2+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3.1.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 4.3.1.2.1
Move x2.
3(x2x)+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3.1.2.2
Multiply x2 by x.
Tap for more steps...
Step 4.3.1.2.2.1
Raise x to the power of 1.
3(x2x1)+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3.1.2.2.2
Use the power rule aman=am+n to combine exponents.
3x2+1+x(-6x)-2x3-2(-3x2)-24x3
3x2+1+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3.1.2.3
Add 2 and 1.
3x3+x(-6x)-2x3-2(-3x2)-24x3
3x3+x(-6x)-2x3-2(-3x2)-24x3
Step 4.3.1.3
Rewrite using the commutative property of multiplication.
3x3-6xx-2x3-2(-3x2)-24x3
Step 4.3.1.4
Multiply x by x by adding the exponents.
Tap for more steps...
Step 4.3.1.4.1
Move x.
3x3-6(xx)-2x3-2(-3x2)-24x3
Step 4.3.1.4.2
Multiply x by x.
3x3-6x2-2x3-2(-3x2)-24x3
3x3-6x2-2x3-2(-3x2)-24x3
Step 4.3.1.5
Multiply -3 by -2.
3x3-6x2-2x3+6x2-24x3
Step 4.3.1.6
Multiply -2 by 4.
3x3-6x2-2x3+6x2-8x3
3x3-6x2-2x3+6x2-8x3
Step 4.3.2
Combine the opposite terms in 3x3-6x2-2x3+6x2-8.
Tap for more steps...
Step 4.3.2.1
Add -6x2 and 6x2.
3x3-2x3+0-8x3
Step 4.3.2.2
Add 3x3-2x3 and 0.
3x3-2x3-8x3
3x3-2x3-8x3
Step 4.3.3
Subtract 2x3 from 3x3.
x3-8x3
x3-8x3
Step 4.4
Simplify the numerator.
Tap for more steps...
Step 4.4.1
Rewrite 8 as 23.
x3-23x3
Step 4.4.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=x and b=2.
(x-2)(x2+x2+22)x3
Step 4.4.3
Simplify.
Tap for more steps...
Step 4.4.3.1
Move 2 to the left of x.
(x-2)(x2+2x+22)x3
Step 4.4.3.2
Raise 2 to the power of 2.
(x-2)(x2+2x+4)x3
(x-2)(x2+2x+4)x3
(x-2)(x2+2x+4)x3
(x-2)(x2+2x+4)x3
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]