Enter a problem...
Calculus Examples
√2x-x2√2x−x2
Step 1
Use n√ax=axnn√ax=axn to rewrite √2x-x2√2x−x2 as (2x-x2)12(2x−x2)12.
ddx[(2x-x2)12]ddx[(2x−x2)12]
Step 2
Step 2.1
To apply the Chain Rule, set u as 2x-x2.
ddu[u12]ddx[2x-x2]
Step 2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
12u12-1ddx[2x-x2]
Step 2.3
Replace all occurrences of u with 2x-x2.
12(2x-x2)12-1ddx[2x-x2]
12(2x-x2)12-1ddx[2x-x2]
Step 3
To write -1 as a fraction with a common denominator, multiply by 22.
12(2x-x2)12-1⋅22ddx[2x-x2]
Step 4
Combine -1 and 22.
12(2x-x2)12+-1⋅22ddx[2x-x2]
Step 5
Combine the numerators over the common denominator.
12(2x-x2)1-1⋅22ddx[2x-x2]
Step 6
Step 6.1
Multiply -1 by 2.
12(2x-x2)1-22ddx[2x-x2]
Step 6.2
Subtract 2 from 1.
12(2x-x2)-12ddx[2x-x2]
12(2x-x2)-12ddx[2x-x2]
Step 7
Step 7.1
Move the negative in front of the fraction.
12(2x-x2)-12ddx[2x-x2]
Step 7.2
Combine 12 and (2x-x2)-12.
(2x-x2)-122ddx[2x-x2]
Step 7.3
Move (2x-x2)-12 to the denominator using the negative exponent rule b-n=1bn.
12(2x-x2)12ddx[2x-x2]
12(2x-x2)12ddx[2x-x2]
Step 8
By the Sum Rule, the derivative of 2x-x2 with respect to x is ddx[2x]+ddx[-x2].
12(2x-x2)12(ddx[2x]+ddx[-x2])
Step 9
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
12(2x-x2)12(2ddx[x]+ddx[-x2])
Step 10
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12(2x-x2)12(2⋅1+ddx[-x2])
Step 11
Multiply 2 by 1.
12(2x-x2)12(2+ddx[-x2])
Step 12
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
12(2x-x2)12(2-ddx[x2])
Step 13
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
12(2x-x2)12(2-(2x))
Step 14
Multiply 2 by -1.
12(2x-x2)12(2-2x)
Step 15
Step 15.1
Reorder the factors of 12(2x-x2)12(2-2x).
(2-2x)12(2x-x2)12
Step 15.2
Multiply 2-2x by 12(2x-x2)12.
2-2x2(2x-x2)12
Step 15.3
Factor 2 out of 2.
2⋅1-2x2(2x-x2)12
Step 15.4
Factor 2 out of -2x.
2⋅1+2(-x)2(2x-x2)12
Step 15.5
Factor 2 out of 2(1)+2(-x).
2(1-x)2(2x-x2)12
Step 15.6
Cancel the common factors.
Step 15.6.1
Factor 2 out of 2(2x-x2)12.
2(1-x)2((2x-x2)12)
Step 15.6.2
Cancel the common factor.
2(1-x)2(2x-x2)12
Step 15.6.3
Rewrite the expression.
1-x(2x-x2)12
1-x(2x-x2)12
1-x(2x-x2)12