Calculus Examples

Graph natural log of 3x
ln(3x)
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Set the argument of the logarithm equal to zero.
3x=0
Step 1.2
Divide each term in 3x=0 by 3 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in 3x=0 by 3.
3x3=03
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
3x3=03
Step 1.2.2.1.2
Divide x by 1.
x=03
x=03
x=03
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Divide 0 by 3.
x=0
x=0
x=0
Step 1.3
The vertical asymptote occurs at x=0.
Vertical Asymptote: x=0
Vertical Asymptote: x=0
Step 2
Find the point at x=1.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln(3(1))
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Multiply 3 by 1.
f(1)=ln(3)
Step 2.2.2
The final answer is ln(3).
ln(3)
ln(3)
Step 2.3
Convert ln(3) to decimal.
y=1.09861228
y=1.09861228
Step 3
Find the point at x=2.
Tap for more steps...
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=ln(3(2))
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Multiply 3 by 2.
f(2)=ln(6)
Step 3.2.2
The final answer is ln(6).
ln(6)
ln(6)
Step 3.3
Convert ln(6) to decimal.
y=1.79175946
y=1.79175946
Step 4
Find the point at x=3.
Tap for more steps...
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=ln(3(3))
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Multiply 3 by 3.
f(3)=ln(9)
Step 4.2.2
The final answer is ln(9).
ln(9)
ln(9)
Step 4.3
Convert ln(9) to decimal.
y=2.19722457
y=2.19722457
Step 5
The log function can be graphed using the vertical asymptote at x=0 and the points (1,1.09861228),(2,1.79175946),(3,2.19722457).
Vertical Asymptote: x=0
xy11.09921.79232.197
Step 6
image of graph
ln(3x)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]