Enter a problem...
Calculus Examples
∫cos2(θ)dθ∫cos2(θ)dθ
Step 1
Use the half-angle formula to rewrite cos2(θ)cos2(θ) as 1+cos(2θ)21+cos(2θ)2.
∫1+cos(2θ)2dθ∫1+cos(2θ)2dθ
Step 2
Since 1212 is constant with respect to θθ, move 1212 out of the integral.
12∫1+cos(2θ)dθ12∫1+cos(2θ)dθ
Step 3
Split the single integral into multiple integrals.
12(∫dθ+∫cos(2θ)dθ)12(∫dθ+∫cos(2θ)dθ)
Step 4
Apply the constant rule.
12(θ+C+∫cos(2θ)dθ)12(θ+C+∫cos(2θ)dθ)
Step 5
Step 5.1
Let u=2θu=2θ. Find dudθdudθ.
Step 5.1.1
Differentiate 2θ2θ.
ddθ[2θ]ddθ[2θ]
Step 5.1.2
Since 22 is constant with respect to θθ, the derivative of 2θ2θ with respect to θθ is 2ddθ[θ]2ddθ[θ].
2ddθ[θ]2ddθ[θ]
Step 5.1.3
Differentiate using the Power Rule which states that ddθ[θn]ddθ[θn] is nθn-1nθn−1 where n=1n=1.
2⋅12⋅1
Step 5.1.4
Multiply 22 by 11.
22
22
Step 5.2
Rewrite the problem using uu and dudu.
12(θ+C+∫cos(u)12du)12(θ+C+∫cos(u)12du)
12(θ+C+∫cos(u)12du)12(θ+C+∫cos(u)12du)
Step 6
Combine cos(u)cos(u) and 1212.
12(θ+C+∫cos(u)2du)12(θ+C+∫cos(u)2du)
Step 7
Since 1212 is constant with respect to uu, move 1212 out of the integral.
12(θ+C+12∫cos(u)du)12(θ+C+12∫cos(u)du)
Step 8
The integral of cos(u)cos(u) with respect to uu is sin(u)sin(u).
12(θ+C+12(sin(u)+C))12(θ+C+12(sin(u)+C))
Step 9
Simplify.
12(θ+12sin(u))+C12(θ+12sin(u))+C
Step 10
Replace all occurrences of uu with 2θ2θ.
12(θ+12sin(2θ))+C12(θ+12sin(2θ))+C
Step 11
Step 11.1
Combine 1212 and sin(2θ)sin(2θ).
12(θ+sin(2θ)2)+C12(θ+sin(2θ)2)+C
Step 11.2
Apply the distributive property.
12θ+12⋅sin(2θ)2+C12θ+12⋅sin(2θ)2+C
Step 11.3
Combine 1212 and θθ.
θ2+12⋅sin(2θ)2+Cθ2+12⋅sin(2θ)2+C
Step 11.4
Multiply 12⋅sin(2θ)212⋅sin(2θ)2.
Step 11.4.1
Multiply 1212 by sin(2θ)2sin(2θ)2.
θ2+sin(2θ)2⋅2+Cθ2+sin(2θ)2⋅2+C
Step 11.4.2
Multiply 22 by 22.
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
Step 12
Reorder terms.
12θ+14sin(2θ)+C12θ+14sin(2θ)+C