Calculus Examples

Evaluate the Integral integral of cos(theta)^2 with respect to theta
cos2(θ)dθcos2(θ)dθ
Step 1
Use the half-angle formula to rewrite cos2(θ)cos2(θ) as 1+cos(2θ)21+cos(2θ)2.
1+cos(2θ)2dθ1+cos(2θ)2dθ
Step 2
Since 1212 is constant with respect to θθ, move 1212 out of the integral.
121+cos(2θ)dθ121+cos(2θ)dθ
Step 3
Split the single integral into multiple integrals.
12(dθ+cos(2θ)dθ)12(dθ+cos(2θ)dθ)
Step 4
Apply the constant rule.
12(θ+C+cos(2θ)dθ)12(θ+C+cos(2θ)dθ)
Step 5
Let u=2θu=2θ. Then du=2dθdu=2dθ, so 12du=dθ12du=dθ. Rewrite using uu and dduu.
Tap for more steps...
Step 5.1
Let u=2θu=2θ. Find dudθdudθ.
Tap for more steps...
Step 5.1.1
Differentiate 2θ2θ.
ddθ[2θ]ddθ[2θ]
Step 5.1.2
Since 22 is constant with respect to θθ, the derivative of 2θ2θ with respect to θθ is 2ddθ[θ]2ddθ[θ].
2ddθ[θ]2ddθ[θ]
Step 5.1.3
Differentiate using the Power Rule which states that ddθ[θn]ddθ[θn] is nθn-1nθn1 where n=1n=1.
2121
Step 5.1.4
Multiply 22 by 11.
22
22
Step 5.2
Rewrite the problem using uu and dudu.
12(θ+C+cos(u)12du)12(θ+C+cos(u)12du)
12(θ+C+cos(u)12du)12(θ+C+cos(u)12du)
Step 6
Combine cos(u)cos(u) and 1212.
12(θ+C+cos(u)2du)12(θ+C+cos(u)2du)
Step 7
Since 1212 is constant with respect to uu, move 1212 out of the integral.
12(θ+C+12cos(u)du)12(θ+C+12cos(u)du)
Step 8
The integral of cos(u)cos(u) with respect to uu is sin(u)sin(u).
12(θ+C+12(sin(u)+C))12(θ+C+12(sin(u)+C))
Step 9
Simplify.
12(θ+12sin(u))+C12(θ+12sin(u))+C
Step 10
Replace all occurrences of uu with 2θ2θ.
12(θ+12sin(2θ))+C12(θ+12sin(2θ))+C
Step 11
Simplify.
Tap for more steps...
Step 11.1
Combine 1212 and sin(2θ)sin(2θ).
12(θ+sin(2θ)2)+C12(θ+sin(2θ)2)+C
Step 11.2
Apply the distributive property.
12θ+12sin(2θ)2+C12θ+12sin(2θ)2+C
Step 11.3
Combine 1212 and θθ.
θ2+12sin(2θ)2+Cθ2+12sin(2θ)2+C
Step 11.4
Multiply 12sin(2θ)212sin(2θ)2.
Tap for more steps...
Step 11.4.1
Multiply 1212 by sin(2θ)2sin(2θ)2.
θ2+sin(2θ)22+Cθ2+sin(2θ)22+C
Step 11.4.2
Multiply 22 by 22.
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
θ2+sin(2θ)4+Cθ2+sin(2θ)4+C
Step 12
Reorder terms.
12θ+14sin(2θ)+C12θ+14sin(2θ)+C
cos2θ
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]