Enter a problem...
Calculus Examples
∫e-4xdx∫e−4xdx
Step 1
Step 1.1
Let u=-4xu=−4x. Find dudxdudx.
Step 1.1.1
Differentiate -4x−4x.
ddx[-4x]ddx[−4x]
Step 1.1.2
Since -4−4 is constant with respect to xx, the derivative of -4x−4x with respect to xx is -4ddx[x]−4ddx[x].
-4ddx[x]−4ddx[x]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
-4⋅1−4⋅1
Step 1.1.4
Multiply -4−4 by 11.
-4−4
-4−4
Step 1.2
Rewrite the problem using uu and dudu.
∫eu1-4du∫eu1−4du
∫eu1-4du∫eu1−4du
Step 2
Step 2.1
Move the negative in front of the fraction.
∫eu(-14)du∫eu(−14)du
Step 2.2
Combine eueu and 1414.
∫-eu4du∫−eu4du
∫-eu4du∫−eu4du
Step 3
Since -1−1 is constant with respect to uu, move -1−1 out of the integral.
-∫eu4du−∫eu4du
Step 4
Since 1414 is constant with respect to uu, move 1414 out of the integral.
-(14∫eudu)−(14∫eudu)
Step 5
The integral of eueu with respect to uu is eueu.
-14(eu+C)−14(eu+C)
Step 6
Simplify.
-14eu+C−14eu+C
Step 7
Replace all occurrences of uu with -4x−4x.
-14e-4x+C−14e−4x+C