Calculus Examples

Evaluate the Integral integral of e^(-4x) with respect to x
e-4xdxe4xdx
Step 1
Let u=-4xu=4x. Then du=-4dxdu=4dx, so -14du=dx14du=dx. Rewrite using uu and dduu.
Tap for more steps...
Step 1.1
Let u=-4xu=4x. Find dudxdudx.
Tap for more steps...
Step 1.1.1
Differentiate -4x4x.
ddx[-4x]ddx[4x]
Step 1.1.2
Since -44 is constant with respect to xx, the derivative of -4x4x with respect to xx is -4ddx[x]4ddx[x].
-4ddx[x]4ddx[x]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
-4141
Step 1.1.4
Multiply -44 by 11.
-44
-44
Step 1.2
Rewrite the problem using uu and dudu.
eu1-4dueu14du
eu1-4dueu14du
Step 2
Simplify.
Tap for more steps...
Step 2.1
Move the negative in front of the fraction.
eu(-14)dueu(14)du
Step 2.2
Combine eueu and 1414.
-eu4dueu4du
-eu4dueu4du
Step 3
Since -11 is constant with respect to uu, move -11 out of the integral.
-eu4dueu4du
Step 4
Since 1414 is constant with respect to uu, move 1414 out of the integral.
-(14eudu)(14eudu)
Step 5
The integral of eueu with respect to uu is eueu.
-14(eu+C)14(eu+C)
Step 6
Simplify.
-14eu+C14eu+C
Step 7
Replace all occurrences of uu with -4x4x.
-14e-4x+C14e4x+C
e-4x
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]