Calculus Examples

Evaluate the Integral integral of sin(x)^3 with respect to x
sin3(x)dx
Step 1
Factor out sin2(x).
sin2(x)sin(x)dx
Step 2
Using the Pythagorean Identity, rewrite sin2(x) as 1-cos2(x).
(1-cos2(x))sin(x)dx
Step 3
Let u=cos(x). Then du=-sin(x)dx, so -1sin(x)du=dx. Rewrite using u and du.
Tap for more steps...
Step 3.1
Let u=cos(x). Find dudx.
Tap for more steps...
Step 3.1.1
Differentiate cos(x).
ddx[cos(x)]
Step 3.1.2
The derivative of cos(x) with respect to x is -sin(x).
-sin(x)
-sin(x)
Step 3.2
Rewrite the problem using u and du.
-1+u2du
-1+u2du
Step 4
Split the single integral into multiple integrals.
-1du+u2du
Step 5
Apply the constant rule.
-u+C+u2du
Step 6
By the Power Rule, the integral of u2 with respect to u is 13u3.
-u+C+13u3+C
Step 7
Simplify.
-u+13u3+C
Step 8
Replace all occurrences of u with cos(x).
-cos(x)+13cos3(x)+C
sin3xdx
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]