Enter a problem...
Calculus Examples
∫21e1x5x6dx∫21e1x5x6dx
Step 1
Step 1.1
Let u=1x5u=1x5. Find dudxdudx.
Step 1.1.1
Differentiate 1x51x5.
ddx[1x5]ddx[1x5]
Step 1.1.2
Apply basic rules of exponents.
Step 1.1.2.1
Rewrite 1x51x5 as (x5)-1(x5)−1.
ddx[(x5)-1]ddx[(x5)−1]
Step 1.1.2.2
Multiply the exponents in (x5)-1(x5)−1.
Step 1.1.2.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ddx[x5⋅-1]ddx[x5⋅−1]
Step 1.1.2.2.2
Multiply 55 by -1−1.
ddx[x-5]ddx[x−5]
ddx[x-5]ddx[x−5]
ddx[x-5]ddx[x−5]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=-5n=−5.
-5x-6−5x−6
Step 1.1.4
Simplify.
Step 1.1.4.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
-51x6−51x6
Step 1.1.4.2
Combine terms.
Step 1.1.4.2.1
Combine -5−5 and 1x61x6.
-5x6−5x6
Step 1.1.4.2.2
Move the negative in front of the fraction.
-5x6−5x6
-5x6−5x6
-5x6−5x6
-5x6−5x6
Step 1.2
Substitute the lower limit in for xx in u=1x5u=1x5.
ulower=115ulower=115
Step 1.3
Simplify.
Step 1.3.1
One to any power is one.
ulower=11ulower=11
Step 1.3.2
Divide 11 by 11.
ulower=1ulower=1
ulower=1ulower=1
Step 1.4
Substitute the upper limit in for xx in u=1x5u=1x5.
uupper=125uupper=125
Step 1.5
Raise 22 to the power of 55.
uupper=132uupper=132
Step 1.6
The values found for ulowerulower and uupperuupper will be used to evaluate the definite integral.
ulower=1ulower=1
uupper=132uupper=132
Step 1.7
Rewrite the problem using uu, dudu, and the new limits of integration.
∫1321-15eudu∫1321−15eudu
∫1321-15eudu∫1321−15eudu
Step 2
Since -15−15 is constant with respect to uu, move -15−15 out of the integral.
-15∫1321eudu−15∫1321eudu
Step 3
The integral of eueu with respect to uu is eueu.
-15eu]1321−15eu]1321
Step 4
Step 4.1
Evaluate eueu at 132132 and at 11.
-15((e132)-e1)−15((e132)−e1)
Step 4.2
Simplify.
-15(e132-e)−15(e132−e)
-15(e132-e)−15(e132−e)
Step 5
Step 5.1
Apply the distributive property.
-15e132-15(-e)−15e132−15(−e)
Step 5.2
Combine e132e132 and 1515.
-e1325-15(-e)−e1325−15(−e)
Step 5.3
Multiply -15(-e)−15(−e).
Step 5.3.1
Multiply -1 by -1.
-e1325+1(15)e
Step 5.3.2
Multiply 15 by 1.
-e1325+15e
Step 5.3.3
Combine 15 and e.
-e1325+e5
-e1325+e5
-e1325+e5
Step 6
The result can be shown in multiple forms.
Exact Form:
-e1325+e5
Decimal Form:
0.33730768…
Step 7