Calculus Examples

Evaluate the Integral integral from 1 to 2 of (e^(1/(x^5)))/(x^6) with respect to x
21e1x5x6dx21e1x5x6dx
Step 1
Let u=1x5u=1x5. Then du=-5x6dxdu=5x6dx, so 1du=-5x6dx1du=5x6dx. Rewrite using uu and dduu.
Tap for more steps...
Step 1.1
Let u=1x5u=1x5. Find dudxdudx.
Tap for more steps...
Step 1.1.1
Differentiate 1x51x5.
ddx[1x5]ddx[1x5]
Step 1.1.2
Apply basic rules of exponents.
Tap for more steps...
Step 1.1.2.1
Rewrite 1x51x5 as (x5)-1(x5)1.
ddx[(x5)-1]ddx[(x5)1]
Step 1.1.2.2
Multiply the exponents in (x5)-1(x5)1.
Tap for more steps...
Step 1.1.2.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ddx[x5-1]ddx[x51]
Step 1.1.2.2.2
Multiply 55 by -11.
ddx[x-5]ddx[x5]
ddx[x-5]ddx[x5]
ddx[x-5]ddx[x5]
Step 1.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-5n=5.
-5x-65x6
Step 1.1.4
Simplify.
Tap for more steps...
Step 1.1.4.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
-51x651x6
Step 1.1.4.2
Combine terms.
Tap for more steps...
Step 1.1.4.2.1
Combine -55 and 1x61x6.
-5x65x6
Step 1.1.4.2.2
Move the negative in front of the fraction.
-5x65x6
-5x65x6
-5x65x6
-5x65x6
Step 1.2
Substitute the lower limit in for xx in u=1x5u=1x5.
ulower=115ulower=115
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
One to any power is one.
ulower=11ulower=11
Step 1.3.2
Divide 11 by 11.
ulower=1ulower=1
ulower=1ulower=1
Step 1.4
Substitute the upper limit in for xx in u=1x5u=1x5.
uupper=125uupper=125
Step 1.5
Raise 22 to the power of 55.
uupper=132uupper=132
Step 1.6
The values found for ulowerulower and uupperuupper will be used to evaluate the definite integral.
ulower=1ulower=1
uupper=132uupper=132
Step 1.7
Rewrite the problem using uu, dudu, and the new limits of integration.
1321-15eudu132115eudu
1321-15eudu132115eudu
Step 2
Since -1515 is constant with respect to uu, move -1515 out of the integral.
-151321eudu151321eudu
Step 3
The integral of eueu with respect to uu is eueu.
-15eu]132115eu]1321
Step 4
Substitute and simplify.
Tap for more steps...
Step 4.1
Evaluate eueu at 132132 and at 11.
-15((e132)-e1)15((e132)e1)
Step 4.2
Simplify.
-15(e132-e)15(e132e)
-15(e132-e)15(e132e)
Step 5
Simplify.
Tap for more steps...
Step 5.1
Apply the distributive property.
-15e132-15(-e)15e13215(e)
Step 5.2
Combine e132e132 and 1515.
-e1325-15(-e)e132515(e)
Step 5.3
Multiply -15(-e)15(e).
Tap for more steps...
Step 5.3.1
Multiply -1 by -1.
-e1325+1(15)e
Step 5.3.2
Multiply 15 by 1.
-e1325+15e
Step 5.3.3
Combine 15 and e.
-e1325+e5
-e1325+e5
-e1325+e5
Step 6
The result can be shown in multiple forms.
Exact Form:
-e1325+e5
Decimal Form:
0.33730768
Step 7
 [x2  12  π  xdx ]