Calculus Examples

Evaluate the Integral integral of (e^( square root of y))/( square root of y) with respect to y
eyydyeyydy
Step 1
Apply basic rules of exponents.
Tap for more steps...
Step 1.1
Use nax=axnnax=axn to rewrite yy as y12y12.
ey12ydyey12ydy
Step 1.2
Use nax=axnnax=axn to rewrite yy as y12y12.
ey12y12dyey12y12dy
Step 1.3
Move y12y12 out of the denominator by raising it to the -11 power.
ey12(y12)-1dyey12(y12)1dy
Step 1.4
Multiply the exponents in (y12)-1(y12)1.
Tap for more steps...
Step 1.4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ey12y12-1dyey12y121dy
Step 1.4.2
Combine 1212 and -11.
ey12y-12dyey12y12dy
Step 1.4.3
Move the negative in front of the fraction.
ey12y-12dyey12y12dy
ey12y-12dyey12y12dy
ey12y-12dyey12y12dy
Step 2
Let u=y12u=y12. Then du=12y12dydu=12y12dy, so -du=-12y12dydu=12y12dy. Rewrite using uu and dduu.
Tap for more steps...
Step 2.1
Let u=y12u=y12. Find dudydudy.
Tap for more steps...
Step 2.1.1
Differentiate y12y12.
ddy[y12]ddy[y12]
Step 2.1.2
Differentiate using the Power Rule which states that ddy[yn]ddy[yn] is nyn-1nyn1 where n=12n=12.
12y12-112y121
Step 2.1.3
To write -11 as a fraction with a common denominator, multiply by 2222.
12y12-12212y12122
Step 2.1.4
Combine -11 and 2222.
12y12+-12212y12+122
Step 2.1.5
Combine the numerators over the common denominator.
12y1-12212y1122
Step 2.1.6
Simplify the numerator.
Tap for more steps...
Step 2.1.6.1
Multiply -11 by 22.
12y1-2212y122
Step 2.1.6.2
Subtract 22 from 11.
12y-1212y12
12y-12
Step 2.1.7
Move the negative in front of the fraction.
12y-12
Step 2.1.8
Simplify.
Tap for more steps...
Step 2.1.8.1
Rewrite the expression using the negative exponent rule b-n=1bn.
121y12
Step 2.1.8.2
Multiply 12 by 1y12.
12y12
12y12
12y12
Step 2.2
Rewrite the problem using u and du.
2eudu
2eudu
Step 3
Since 2 is constant with respect to u, move 2 out of the integral.
2eudu
Step 4
The integral of eu with respect to u is eu.
2(eu+C)
Step 5
Simplify.
2eu+C
Step 6
Replace all occurrences of u with y12.
2ey12+C
 [x2  12  π  xdx ]