Enter a problem...
Calculus Examples
∫e√y√ydy∫e√y√ydy
Step 1
Step 1.1
Use n√ax=axnn√ax=axn to rewrite √y√y as y12y12.
∫ey12√ydy∫ey12√ydy
Step 1.2
Use n√ax=axnn√ax=axn to rewrite √y√y as y12y12.
∫ey12y12dy∫ey12y12dy
Step 1.3
Move y12y12 out of the denominator by raising it to the -1−1 power.
∫ey12(y12)-1dy∫ey12(y12)−1dy
Step 1.4
Multiply the exponents in (y12)-1(y12)−1.
Step 1.4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
∫ey12y12⋅-1dy∫ey12y12⋅−1dy
Step 1.4.2
Combine 1212 and -1−1.
∫ey12y-12dy∫ey12y−12dy
Step 1.4.3
Move the negative in front of the fraction.
∫ey12y-12dy∫ey12y−12dy
∫ey12y-12dy∫ey12y−12dy
∫ey12y-12dy∫ey12y−12dy
Step 2
Step 2.1
Let u=y12u=y12. Find dudydudy.
Step 2.1.1
Differentiate y12y12.
ddy[y12]ddy[y12]
Step 2.1.2
Differentiate using the Power Rule which states that ddy[yn]ddy[yn] is nyn-1nyn−1 where n=12n=12.
12y12-112y12−1
Step 2.1.3
To write -1−1 as a fraction with a common denominator, multiply by 2222.
12y12-1⋅2212y12−1⋅22
Step 2.1.4
Combine -1−1 and 2222.
12y12+-1⋅2212y12+−1⋅22
Step 2.1.5
Combine the numerators over the common denominator.
12y1-1⋅2212y1−1⋅22
Step 2.1.6
Simplify the numerator.
Step 2.1.6.1
Multiply -1−1 by 22.
12y1-2212y1−22
Step 2.1.6.2
Subtract 22 from 11.
12y-1212y−12
12y-12
Step 2.1.7
Move the negative in front of the fraction.
12y-12
Step 2.1.8
Simplify.
Step 2.1.8.1
Rewrite the expression using the negative exponent rule b-n=1bn.
12⋅1y12
Step 2.1.8.2
Multiply 12 by 1y12.
12y12
12y12
12y12
Step 2.2
Rewrite the problem using u and du.
∫2eudu
∫2eudu
Step 3
Since 2 is constant with respect to u, move 2 out of the integral.
2∫eudu
Step 4
The integral of eu with respect to u is eu.
2(eu+C)
Step 5
Simplify.
2eu+C
Step 6
Replace all occurrences of u with y12.
2ey12+C