Enter a problem...
Calculus Examples
∫(x2+2x)cos(x)dx
Step 1
Integrate by parts using the formula ∫udv=uv−∫vdu, where u=x2+2x and dv=cos(x).
(x2+2x)sin(x)−∫sin(x)(2x+2)dx
Step 2
Integrate by parts using the formula ∫udv=uv−∫vdu, where u=2x+2 and dv=sin(x).
(x2+2x)sin(x)−((2x+2)(−cos(x))−∫−cos(x)⋅2dx)
Step 3
Multiply 2 by −1.
(x2+2x)sin(x)−((2x+2)(−cos(x))−∫−2cos(x)dx)
Step 4
Since −2 is constant with respect to x, move −2 out of the integral.
(x2+2x)sin(x)−((2x+2)(−cos(x))−(−2∫cos(x)dx))
Step 5
Multiply −2 by −1.
(x2+2x)sin(x)−((2x+2)(−cos(x))+2∫cos(x)dx)
Step 6
The integral of cos(x) with respect to x is sin(x).
(x2+2x)sin(x)−((2x+2)(−cos(x))+2(sin(x)+C))
Step 7
Rewrite (x2+2x)sin(x)−((2x+2)(−cos(x))+2(sin(x)+C)) as x2sin(x)+2xsin(x)−((2x+2)(−cos(x))+2sin(x))+C.
x2sin(x)+2xsin(x)−((2x+2)(−cos(x))+2sin(x))+C