Calculus Examples

Evaluate the Integral integral of (x^2+2x)cos(x) with respect to x
(x2+2x)cos(x)dx
Step 1
Integrate by parts using the formula udv=uvvdu, where u=x2+2x and dv=cos(x).
(x2+2x)sin(x)sin(x)(2x+2)dx
Step 2
Integrate by parts using the formula udv=uvvdu, where u=2x+2 and dv=sin(x).
(x2+2x)sin(x)((2x+2)(cos(x))cos(x)2dx)
Step 3
Multiply 2 by 1.
(x2+2x)sin(x)((2x+2)(cos(x))2cos(x)dx)
Step 4
Since 2 is constant with respect to x, move 2 out of the integral.
(x2+2x)sin(x)((2x+2)(cos(x))(2cos(x)dx))
Step 5
Multiply 2 by 1.
(x2+2x)sin(x)((2x+2)(cos(x))+2cos(x)dx)
Step 6
The integral of cos(x) with respect to x is sin(x).
(x2+2x)sin(x)((2x+2)(cos(x))+2(sin(x)+C))
Step 7
Rewrite (x2+2x)sin(x)((2x+2)(cos(x))+2(sin(x)+C)) as x2sin(x)+2xsin(x)((2x+2)(cos(x))+2sin(x))+C.
x2sin(x)+2xsin(x)((2x+2)(cos(x))+2sin(x))+C
 x2  12  π  xdx