Calculus Examples

Evaluate the Integral integral of sec(x)^3 with respect to x
sec3(x)dxsec3(x)dx
Step 1
Factor sec(x)sec(x) out of sec3(x)sec3(x).
sec(x)sec2(x)dxsec(x)sec2(x)dx
Step 2
Integrate by parts using the formula udv=uv-vduudv=uvvdu, where u=sec(x)u=sec(x) and dv=sec2(x)dv=sec2(x).
sec(x)tan(x)-tan(x)(sec(x)tan(x))dxsec(x)tan(x)tan(x)(sec(x)tan(x))dx
Step 3
Raise tan(x)tan(x) to the power of 11.
sec(x)tan(x)-tan1(x)tan(x)sec(x)dxsec(x)tan(x)tan1(x)tan(x)sec(x)dx
Step 4
Raise tan(x)tan(x) to the power of 11.
sec(x)tan(x)-tan1(x)tan1(x)sec(x)dxsec(x)tan(x)tan1(x)tan1(x)sec(x)dx
Step 5
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)-tan(x)1+1sec(x)dxsec(x)tan(x)tan(x)1+1sec(x)dx
Step 6
Simplify the expression.
Tap for more steps...
Step 6.1
Add 11 and 11.
sec(x)tan(x)-tan2(x)sec(x)dxsec(x)tan(x)tan2(x)sec(x)dx
Step 6.2
Reorder tan2(x)tan2(x) and sec(x)sec(x).
sec(x)tan(x)-sec(x)tan2(x)dxsec(x)tan(x)sec(x)tan2(x)dx
sec(x)tan(x)-sec(x)tan2(x)dxsec(x)tan(x)sec(x)tan2(x)dx
Step 7
Using the Pythagorean Identity, rewrite tan2(x)tan2(x) as -1+sec2(x)1+sec2(x).
sec(x)tan(x)-sec(x)(-1+sec2(x))dxsec(x)tan(x)sec(x)(1+sec2(x))dx
Step 8
Simplify by multiplying through.
Tap for more steps...
Step 8.1
Rewrite the exponentiation as a product.
sec(x)tan(x)-sec(x)(-1+sec(x)sec(x))dxsec(x)tan(x)sec(x)(1+sec(x)sec(x))dx
Step 8.2
Apply the distributive property.
sec(x)tan(x)-sec(x)-1+sec(x)(sec(x)sec(x))dxsec(x)tan(x)sec(x)1+sec(x)(sec(x)sec(x))dx
Step 8.3
Reorder sec(x)sec(x) and -11.
sec(x)tan(x)--1sec(x)+sec(x)(sec(x)sec(x))dxsec(x)tan(x)1sec(x)+sec(x)(sec(x)sec(x))dx
sec(x)tan(x)--1sec(x)+sec(x)(sec(x)sec(x))dxsec(x)tan(x)1sec(x)+sec(x)(sec(x)sec(x))dx
Step 9
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)--1sec(x)+sec1(x)sec(x)sec(x)dxsec(x)tan(x)1sec(x)+sec1(x)sec(x)sec(x)dx
Step 10
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)--1sec(x)+sec1(x)sec1(x)sec(x)dxsec(x)tan(x)1sec(x)+sec1(x)sec1(x)sec(x)dx
Step 11
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)--1sec(x)+sec(x)1+1sec(x)dxsec(x)tan(x)1sec(x)+sec(x)1+1sec(x)dx
Step 12
Add 11 and 11.
sec(x)tan(x)--1sec(x)+sec2(x)sec(x)dxsec(x)tan(x)1sec(x)+sec2(x)sec(x)dx
Step 13
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)--1sec(x)+sec2(x)sec1(x)dxsec(x)tan(x)1sec(x)+sec2(x)sec1(x)dx
Step 14
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)--1sec(x)+sec(x)2+1dxsec(x)tan(x)1sec(x)+sec(x)2+1dx
Step 15
Add 22 and 11.
sec(x)tan(x)--1sec(x)+sec3(x)dxsec(x)tan(x)1sec(x)+sec3(x)dx
Step 16
Split the single integral into multiple integrals.
sec(x)tan(x)-(-1sec(x)dx+sec3(x)dx)sec(x)tan(x)(1sec(x)dx+sec3(x)dx)
Step 17
Since -11 is constant with respect to xx, move -11 out of the integral.
sec(x)tan(x)-(-sec(x)dx+sec3(x)dx)sec(x)tan(x)(sec(x)dx+sec3(x)dx)
Step 18
The integral of sec(x)sec(x) with respect to xx is ln(|sec(x)+tan(x)|)ln(|sec(x)+tan(x)|).
sec(x)tan(x)-(-(ln(|sec(x)+tan(x)|)+C)+sec3(x)dx)sec(x)tan(x)((ln(|sec(x)+tan(x)|)+C)+sec3(x)dx)
Step 19
Simplify by multiplying through.
Tap for more steps...
Step 19.1
Apply the distributive property.
sec(x)tan(x)--(ln(|sec(x)+tan(x)|)+C)-sec3(x)dxsec(x)tan(x)(ln(|sec(x)+tan(x)|)+C)sec3(x)dx
Step 19.2
Multiply -11 by -11.
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)-sec3(x)dxsec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)sec3(x)dx
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)-sec3(x)dxsec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)sec3(x)dx
Step 20
Solving for sec3(x)dxsec3(x)dx, we find that sec3(x)dxsec3(x)dx = sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2.
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2+Csec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2+C
Step 21
Multiply ln(|sec(x)+tan(x)|)+Cln(|sec(x)+tan(x)|)+C by 11.
sec(x)tan(x)+ln(|sec(x)+tan(x)|)+C2+Csec(x)tan(x)+ln(|sec(x)+tan(x)|)+C2+C
Step 22
Simplify.
12(sec(x)tan(x)+ln(|sec(x)+tan(x)|))+C
 [x2  12  π  xdx ]