Enter a problem...
Calculus Examples
∫sec3(x)dx∫sec3(x)dx
Step 1
Factor sec(x)sec(x) out of sec3(x)sec3(x).
∫sec(x)sec2(x)dx∫sec(x)sec2(x)dx
Step 2
Integrate by parts using the formula ∫udv=uv-∫vdu∫udv=uv−∫vdu, where u=sec(x)u=sec(x) and dv=sec2(x)dv=sec2(x).
sec(x)tan(x)-∫tan(x)(sec(x)tan(x))dxsec(x)tan(x)−∫tan(x)(sec(x)tan(x))dx
Step 3
Raise tan(x)tan(x) to the power of 11.
sec(x)tan(x)-∫tan1(x)tan(x)sec(x)dxsec(x)tan(x)−∫tan1(x)tan(x)sec(x)dx
Step 4
Raise tan(x)tan(x) to the power of 11.
sec(x)tan(x)-∫tan1(x)tan1(x)sec(x)dxsec(x)tan(x)−∫tan1(x)tan1(x)sec(x)dx
Step 5
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)-∫tan(x)1+1sec(x)dxsec(x)tan(x)−∫tan(x)1+1sec(x)dx
Step 6
Step 6.1
Add 11 and 11.
sec(x)tan(x)-∫tan2(x)sec(x)dxsec(x)tan(x)−∫tan2(x)sec(x)dx
Step 6.2
Reorder tan2(x)tan2(x) and sec(x)sec(x).
sec(x)tan(x)-∫sec(x)tan2(x)dxsec(x)tan(x)−∫sec(x)tan2(x)dx
sec(x)tan(x)-∫sec(x)tan2(x)dxsec(x)tan(x)−∫sec(x)tan2(x)dx
Step 7
Using the Pythagorean Identity, rewrite tan2(x)tan2(x) as -1+sec2(x)−1+sec2(x).
sec(x)tan(x)-∫sec(x)(-1+sec2(x))dxsec(x)tan(x)−∫sec(x)(−1+sec2(x))dx
Step 8
Step 8.1
Rewrite the exponentiation as a product.
sec(x)tan(x)-∫sec(x)(-1+sec(x)sec(x))dxsec(x)tan(x)−∫sec(x)(−1+sec(x)sec(x))dx
Step 8.2
Apply the distributive property.
sec(x)tan(x)-∫sec(x)⋅-1+sec(x)(sec(x)sec(x))dxsec(x)tan(x)−∫sec(x)⋅−1+sec(x)(sec(x)sec(x))dx
Step 8.3
Reorder sec(x)sec(x) and -1−1.
sec(x)tan(x)-∫-1⋅sec(x)+sec(x)(sec(x)sec(x))dxsec(x)tan(x)−∫−1⋅sec(x)+sec(x)(sec(x)sec(x))dx
sec(x)tan(x)-∫-1⋅sec(x)+sec(x)(sec(x)sec(x))dxsec(x)tan(x)−∫−1⋅sec(x)+sec(x)(sec(x)sec(x))dx
Step 9
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)-∫-1sec(x)+sec1(x)sec(x)sec(x)dxsec(x)tan(x)−∫−1sec(x)+sec1(x)sec(x)sec(x)dx
Step 10
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)-∫-1sec(x)+sec1(x)sec1(x)sec(x)dxsec(x)tan(x)−∫−1sec(x)+sec1(x)sec1(x)sec(x)dx
Step 11
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)-∫-1sec(x)+sec(x)1+1sec(x)dxsec(x)tan(x)−∫−1sec(x)+sec(x)1+1sec(x)dx
Step 12
Add 11 and 11.
sec(x)tan(x)-∫-1sec(x)+sec2(x)sec(x)dxsec(x)tan(x)−∫−1sec(x)+sec2(x)sec(x)dx
Step 13
Raise sec(x)sec(x) to the power of 11.
sec(x)tan(x)-∫-1sec(x)+sec2(x)sec1(x)dxsec(x)tan(x)−∫−1sec(x)+sec2(x)sec1(x)dx
Step 14
Use the power rule aman=am+naman=am+n to combine exponents.
sec(x)tan(x)-∫-1sec(x)+sec(x)2+1dxsec(x)tan(x)−∫−1sec(x)+sec(x)2+1dx
Step 15
Add 22 and 11.
sec(x)tan(x)-∫-1sec(x)+sec3(x)dxsec(x)tan(x)−∫−1sec(x)+sec3(x)dx
Step 16
Split the single integral into multiple integrals.
sec(x)tan(x)-(∫-1sec(x)dx+∫sec3(x)dx)sec(x)tan(x)−(∫−1sec(x)dx+∫sec3(x)dx)
Step 17
Since -1−1 is constant with respect to xx, move -1−1 out of the integral.
sec(x)tan(x)-(-∫sec(x)dx+∫sec3(x)dx)sec(x)tan(x)−(−∫sec(x)dx+∫sec3(x)dx)
Step 18
The integral of sec(x)sec(x) with respect to xx is ln(|sec(x)+tan(x)|)ln(|sec(x)+tan(x)|).
sec(x)tan(x)-(-(ln(|sec(x)+tan(x)|)+C)+∫sec3(x)dx)sec(x)tan(x)−(−(ln(|sec(x)+tan(x)|)+C)+∫sec3(x)dx)
Step 19
Step 19.1
Apply the distributive property.
sec(x)tan(x)--(ln(|sec(x)+tan(x)|)+C)-∫sec3(x)dxsec(x)tan(x)−−(ln(|sec(x)+tan(x)|)+C)−∫sec3(x)dx
Step 19.2
Multiply -1−1 by -1−1.
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)-∫sec3(x)dxsec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)−∫sec3(x)dx
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)-∫sec3(x)dxsec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)−∫sec3(x)dx
Step 20
Solving for ∫sec3(x)dx∫sec3(x)dx, we find that ∫sec3(x)dx∫sec3(x)dx = sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2.
sec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2+Csec(x)tan(x)+1(ln(|sec(x)+tan(x)|)+C)2+C
Step 21
Multiply ln(|sec(x)+tan(x)|)+Cln(|sec(x)+tan(x)|)+C by 11.
sec(x)tan(x)+ln(|sec(x)+tan(x)|)+C2+Csec(x)tan(x)+ln(|sec(x)+tan(x)|)+C2+C
Step 22
Simplify.
12(sec(x)tan(x)+ln(|sec(x)+tan(x)|))+C