Enter a problem...
Calculus Examples
x2-1x2+x+1x2−1x2+x+1
Step 1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=x2-1f(x)=x2−1 and g(x)=x2+x+1g(x)=x2+x+1.
(x2+x+1)ddx[x2-1]-(x2-1)ddx[x2+x+1](x2+x+1)2(x2+x+1)ddx[x2−1]−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2
Step 2.1
By the Sum Rule, the derivative of x2-1x2−1 with respect to xx is ddx[x2]+ddx[-1]ddx[x2]+ddx[−1].
(x2+x+1)(ddx[x2]+ddx[-1])-(x2-1)ddx[x2+x+1](x2+x+1)2(x2+x+1)(ddx[x2]+ddx[−1])−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
(x2+x+1)(2x+ddx[-1])-(x2-1)ddx[x2+x+1](x2+x+1)2(x2+x+1)(2x+ddx[−1])−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2.3
Since -1−1 is constant with respect to xx, the derivative of -1−1 with respect to xx is 00.
(x2+x+1)(2x+0)-(x2-1)ddx[x2+x+1](x2+x+1)2(x2+x+1)(2x+0)−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2.4
Simplify the expression.
Step 2.4.1
Add 2x2x and 00.
(x2+x+1)(2x)-(x2-1)ddx[x2+x+1](x2+x+1)2(x2+x+1)(2x)−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2.4.2
Move 22 to the left of x2+x+1x2+x+1.
2⋅(x2+x+1)x-(x2-1)ddx[x2+x+1](x2+x+1)22⋅(x2+x+1)x−(x2−1)ddx[x2+x+1](x2+x+1)2
2⋅(x2+x+1)x-(x2-1)ddx[x2+x+1](x2+x+1)22⋅(x2+x+1)x−(x2−1)ddx[x2+x+1](x2+x+1)2
Step 2.5
By the Sum Rule, the derivative of x2+x+1x2+x+1 with respect to xx is ddx[x2]+ddx[x]+ddx[1]ddx[x2]+ddx[x]+ddx[1].
2(x2+x+1)x-(x2-1)(ddx[x2]+ddx[x]+ddx[1])(x2+x+1)22(x2+x+1)x−(x2−1)(ddx[x2]+ddx[x]+ddx[1])(x2+x+1)2
Step 2.6
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
2(x2+x+1)x-(x2-1)(2x+ddx[x]+ddx[1])(x2+x+1)22(x2+x+1)x−(x2−1)(2x+ddx[x]+ddx[1])(x2+x+1)2
Step 2.7
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
2(x2+x+1)x-(x2-1)(2x+1+ddx[1])(x2+x+1)22(x2+x+1)x−(x2−1)(2x+1+ddx[1])(x2+x+1)2
Step 2.8
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
2(x2+x+1)x-(x2-1)(2x+1+0)(x2+x+1)22(x2+x+1)x−(x2−1)(2x+1+0)(x2+x+1)2
Step 2.9
Add 2x+1 and 0.
2(x2+x+1)x-(x2-1)(2x+1)(x2+x+1)2
2(x2+x+1)x-(x2-1)(2x+1)(x2+x+1)2
Step 3
Step 3.1
Apply the distributive property.
(2x2+2x+2⋅1)x-(x2-1)(2x+1)(x2+x+1)2
Step 3.2
Apply the distributive property.
2x2x+2x⋅x+2⋅1x-(x2-1)(2x+1)(x2+x+1)2
Step 3.3
Apply the distributive property.
2x2x+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4
Simplify the numerator.
Step 3.4.1
Simplify each term.
Step 3.4.1.1
Multiply x2 by x by adding the exponents.
Step 3.4.1.1.1
Move x.
2(x⋅x2)+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.1.2
Multiply x by x2.
Step 3.4.1.1.2.1
Raise x to the power of 1.
2(x1x2)+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.1.2.2
Use the power rule aman=am+n to combine exponents.
2x1+2+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
2x1+2+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.1.3
Add 1 and 2.
2x3+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
2x3+2x⋅x+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.2
Multiply x by x by adding the exponents.
Step 3.4.1.2.1
Move x.
2x3+2(x⋅x)+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.2.2
Multiply x by x.
2x3+2x2+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
2x3+2x2+2⋅1x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.3
Multiply 2 by 1.
2x3+2x2+2x+(-x2--1)(2x+1)(x2+x+1)2
Step 3.4.1.4
Multiply -1 by -1.
2x3+2x2+2x+(-x2+1)(2x+1)(x2+x+1)2
Step 3.4.1.5
Expand (-x2+1)(2x+1) using the FOIL Method.
Step 3.4.1.5.1
Apply the distributive property.
2x3+2x2+2x-x2(2x+1)+1(2x+1)(x2+x+1)2
Step 3.4.1.5.2
Apply the distributive property.
2x3+2x2+2x-x2(2x)-x2⋅1+1(2x+1)(x2+x+1)2
Step 3.4.1.5.3
Apply the distributive property.
2x3+2x2+2x-x2(2x)-x2⋅1+1(2x)+1⋅1(x2+x+1)2
2x3+2x2+2x-x2(2x)-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6
Simplify each term.
Step 3.4.1.6.1
Rewrite using the commutative property of multiplication.
2x3+2x2+2x-1⋅2x2x-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.2
Multiply x2 by x by adding the exponents.
Step 3.4.1.6.2.1
Move x.
2x3+2x2+2x-1⋅2(x⋅x2)-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.2.2
Multiply x by x2.
Step 3.4.1.6.2.2.1
Raise x to the power of 1.
2x3+2x2+2x-1⋅2(x1x2)-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.2.2.2
Use the power rule aman=am+n to combine exponents.
2x3+2x2+2x-1⋅2x1+2-x2⋅1+1(2x)+1⋅1(x2+x+1)2
2x3+2x2+2x-1⋅2x1+2-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.2.3
Add 1 and 2.
2x3+2x2+2x-1⋅2x3-x2⋅1+1(2x)+1⋅1(x2+x+1)2
2x3+2x2+2x-1⋅2x3-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.3
Multiply -1 by 2.
2x3+2x2+2x-2x3-x2⋅1+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.4
Multiply -1 by 1.
2x3+2x2+2x-2x3-x2+1(2x)+1⋅1(x2+x+1)2
Step 3.4.1.6.5
Multiply 2x by 1.
2x3+2x2+2x-2x3-x2+2x+1⋅1(x2+x+1)2
Step 3.4.1.6.6
Multiply 1 by 1.
2x3+2x2+2x-2x3-x2+2x+1(x2+x+1)2
2x3+2x2+2x-2x3-x2+2x+1(x2+x+1)2
2x3+2x2+2x-2x3-x2+2x+1(x2+x+1)2
Step 3.4.2
Combine the opposite terms in 2x3+2x2+2x-2x3-x2+2x+1.
Step 3.4.2.1
Subtract 2x3 from 2x3.
2x2+2x+0-x2+2x+1(x2+x+1)2
Step 3.4.2.2
Add 2x2+2x and 0.
2x2+2x-x2+2x+1(x2+x+1)2
2x2+2x-x2+2x+1(x2+x+1)2
Step 3.4.3
Subtract x2 from 2x2.
x2+2x+2x+1(x2+x+1)2
Step 3.4.4
Add 2x and 2x.
x2+4x+1(x2+x+1)2
x2+4x+1(x2+x+1)2
x2+4x+1(x2+x+1)2