Calculus Examples

Evaluate the Integral integral from 0 to 10 of 4x^2+7 with respect to x
0104x2+7dx
Step 1
Split the single integral into multiple integrals.
0104x2dx+0107dx
Step 2
Since 4 is constant with respect to x, move 4 out of the integral.
4010x2dx+0107dx
Step 3
By the Power Rule, the integral of x2 with respect to x is 13x3.
4(13x3]010)+0107dx
Step 4
Combine 13 and x3.
4(x33]010)+0107dx
Step 5
Apply the constant rule.
4(x33]010)+7x]010
Step 6
Substitute and simplify.
Tap for more steps...
Step 6.1
Evaluate x33 at 10 and at 0.
4((1033)-033)+7x]010
Step 6.2
Evaluate 7x at 10 and at 0.
4(1033-033)+710-70
Step 6.3
Simplify.
Tap for more steps...
Step 6.3.1
Raise 10 to the power of 3.
4(10003-033)+710-70
Step 6.3.2
Raising 0 to any positive power yields 0.
4(10003-03)+710-70
Step 6.3.3
Cancel the common factor of 0 and 3.
Tap for more steps...
Step 6.3.3.1
Factor 3 out of 0.
4(10003-3(0)3)+710-70
Step 6.3.3.2
Cancel the common factors.
Tap for more steps...
Step 6.3.3.2.1
Factor 3 out of 3.
4(10003-3031)+710-70
Step 6.3.3.2.2
Cancel the common factor.
4(10003-3031)+710-70
Step 6.3.3.2.3
Rewrite the expression.
4(10003-01)+710-70
Step 6.3.3.2.4
Divide 0 by 1.
4(10003-0)+710-70
4(10003-0)+710-70
4(10003-0)+710-70
Step 6.3.4
Multiply -1 by 0.
4(10003+0)+710-70
Step 6.3.5
Add 10003 and 0.
4(10003)+710-70
Step 6.3.6
Combine 4 and 10003.
410003+710-70
Step 6.3.7
Multiply 4 by 1000.
40003+710-70
Step 6.3.8
Multiply 7 by 10.
40003+70-70
Step 6.3.9
Multiply -7 by 0.
40003+70+0
Step 6.3.10
Add 70 and 0.
40003+70
Step 6.3.11
To write 70 as a fraction with a common denominator, multiply by 33.
40003+7033
Step 6.3.12
Combine 70 and 33.
40003+7033
Step 6.3.13
Combine the numerators over the common denominator.
4000+7033
Step 6.3.14
Simplify the numerator.
Tap for more steps...
Step 6.3.14.1
Multiply 70 by 3.
4000+2103
Step 6.3.14.2
Add 4000 and 210.
42103
42103
42103
42103
Step 7
The result can be shown in multiple forms.
Exact Form:
42103
Decimal Form:
1403.3
Mixed Number Form:
140313
Step 8
image of graph
0104x2+7
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]