Calculus Examples

Evaluate the Integral integral of tan(x)^2 with respect to x
tan2(x)dx
Step 1
Using the Pythagorean Identity, rewrite tan2(x) as -1+sec2(x).
-1+sec2(x)dx
Step 2
Split the single integral into multiple integrals.
-1dx+sec2(x)dx
Step 3
Apply the constant rule.
-x+C+sec2(x)dx
Step 4
Since the derivative of tan(x) is sec2(x), the integral of sec2(x) is tan(x).
-x+C+tan(x)+C
Step 5
Simplify.
-x+tan(x)+C
tan2x
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]