Enter a problem...
Calculus Examples
g(x)=xe3xg(x)=xe3x
Step 1
Step 1.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=e3x.
xddx[e3x]+e3xddx[x]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=3x.
Step 1.2.1
To apply the Chain Rule, set u as 3x.
x(ddu[eu]ddx[3x])+e3xddx[x]
Step 1.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
x(euddx[3x])+e3xddx[x]
Step 1.2.3
Replace all occurrences of u with 3x.
x(e3xddx[3x])+e3xddx[x]
x(e3xddx[3x])+e3xddx[x]
Step 1.3
Differentiate.
Step 1.3.1
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
x(e3x(3ddx[x]))+e3xddx[x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x(e3x(3⋅1))+e3xddx[x]
Step 1.3.3
Simplify the expression.
Step 1.3.3.1
Multiply 3 by 1.
x(e3x⋅3)+e3xddx[x]
Step 1.3.3.2
Move 3 to the left of e3x.
x(3⋅e3x)+e3xddx[x]
x(3⋅e3x)+e3xddx[x]
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x(3e3x)+e3x⋅1
Step 1.3.5
Multiply e3x by 1.
x(3e3x)+e3x
x(3e3x)+e3x
Step 1.4
Simplify.
Step 1.4.1
Reorder terms.
3e3xx+e3x
Step 1.4.2
Reorder factors in 3e3xx+e3x.
3xe3x+e3x
3xe3x+e3x
3xe3x+e3x
Step 2
Step 2.1
By the Sum Rule, the derivative of 3xe3x+e3x with respect to x is ddx[3xe3x]+ddx[e3x].
g′′(x)=ddx(3xe3x)+ddx(e3x)
Step 2.2
Evaluate ddx[3xe3x].
Step 2.2.1
Since 3 is constant with respect to x, the derivative of 3xe3x with respect to x is 3ddx[xe3x].
g′′(x)=3ddx(xe3x)+ddx(e3x)
Step 2.2.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=e3x.
g′′(x)=3(xddx(e3x)+e3xddx(x))+ddx(e3x)
Step 2.2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=3x.
Step 2.2.3.1
To apply the Chain Rule, set u1 as 3x.
g′′(x)=3(x(ddu(1)(eu1)ddx(3x))+e3xddx(x))+ddx(e3x)
Step 2.2.3.2
Differentiate using the Exponential Rule which states that ddu1[au1] is au1ln(a) where a=e.
g′′(x)=3(x(eu1ddx(3x))+e3xddx(x))+ddx(e3x)
Step 2.2.3.3
Replace all occurrences of u1 with 3x.
g′′(x)=3(x(e3xddx(3x))+e3xddx(x))+ddx(e3x)
g′′(x)=3(x(e3xddx(3x))+e3xddx(x))+ddx(e3x)
Step 2.2.4
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
g′′(x)=3(x(e3x(3ddx(x)))+e3xddx(x))+ddx(e3x)
Step 2.2.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
g′′(x)=3(x(e3x(3⋅1))+e3xddx(x))+ddx(e3x)
Step 2.2.6
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
g′′(x)=3(x(e3x(3⋅1))+e3x⋅1)+ddx(e3x)
Step 2.2.7
Multiply 3 by 1.
g′′(x)=3(x(e3x⋅3)+e3x⋅1)+ddx(e3x)
Step 2.2.8
Move 3 to the left of e3x.
g′′(x)=3(x(3⋅e3x)+e3x⋅1)+ddx(e3x)
Step 2.2.9
Multiply e3x by 1.
g′′(x)=3(x(3e3x)+e3x)+ddx(e3x)
g′′(x)=3(x(3e3x)+e3x)+ddx(e3x)
Step 2.3
Evaluate ddx[e3x].
Step 2.3.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=3x.
Step 2.3.1.1
To apply the Chain Rule, set u2 as 3x.
g′′(x)=3(x(3e3x)+e3x)+ddu(2)(eu2)ddx(3x)
Step 2.3.1.2
Differentiate using the Exponential Rule which states that ddu2[au2] is au2ln(a) where a=e.
g′′(x)=3(x(3e3x)+e3x)+eu2ddx(3x)
Step 2.3.1.3
Replace all occurrences of u2 with 3x.
g′′(x)=3(x(3e3x)+e3x)+e3xddx(3x)
g′′(x)=3(x(3e3x)+e3x)+e3xddx(3x)
Step 2.3.2
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
g′′(x)=3(x(3e3x)+e3x)+e3x(3ddx(x))
Step 2.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
g′′(x)=3(x(3e3x)+e3x)+e3x(3⋅1)
Step 2.3.4
Multiply 3 by 1.
g′′(x)=3(x(3e3x)+e3x)+e3x⋅3
Step 2.3.5
Move 3 to the left of e3x.
g′′(x)=3(x(3e3x)+e3x)+3e3x
g′′(x)=3(x(3e3x)+e3x)+3e3x
Step 2.4
Simplify.
Step 2.4.1
Apply the distributive property.
g′′(x)=3(x(3e3x))+3e3x+3e3x
Step 2.4.2
Combine terms.
Step 2.4.2.1
Multiply 3 by 3.
g′′(x)=9(x(e3x))+3e3x+3e3x
Step 2.4.2.2
Add 3e3x and 3e3x.
g′′(x)=9xe3x+6e3x
g′′(x)=9xe3x+6e3x
Step 2.4.3
Reorder terms.
g′′(x)=9e3xx+6e3x
Step 2.4.4
Reorder factors in 9e3xx+6e3x.
g′′(x)=9xe3x+6e3x
g′′(x)=9xe3x+6e3x
g′′(x)=9xe3x+6e3x
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
3xe3x+e3x=0
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=e3x.
xddx[e3x]+e3xddx[x]
Step 4.1.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=3x.
Step 4.1.2.1
To apply the Chain Rule, set u as 3x.
x(ddu[eu]ddx[3x])+e3xddx[x]
Step 4.1.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
x(euddx[3x])+e3xddx[x]
Step 4.1.2.3
Replace all occurrences of u with 3x.
x(e3xddx[3x])+e3xddx[x]
x(e3xddx[3x])+e3xddx[x]
Step 4.1.3
Differentiate.
Step 4.1.3.1
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
x(e3x(3ddx[x]))+e3xddx[x]
Step 4.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x(e3x(3⋅1))+e3xddx[x]
Step 4.1.3.3
Simplify the expression.
Step 4.1.3.3.1
Multiply 3 by 1.
x(e3x⋅3)+e3xddx[x]
Step 4.1.3.3.2
Move 3 to the left of e3x.
x(3⋅e3x)+e3xddx[x]
x(3⋅e3x)+e3xddx[x]
Step 4.1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x(3e3x)+e3x⋅1
Step 4.1.3.5
Multiply e3x by 1.
x(3e3x)+e3x
x(3e3x)+e3x
Step 4.1.4
Simplify.
Step 4.1.4.1
Reorder terms.
3e3xx+e3x
Step 4.1.4.2
Reorder factors in 3e3xx+e3x.
f′(x)=3xe3x+e3x
f′(x)=3xe3x+e3x
f′(x)=3xe3x+e3x
Step 4.2
The first derivative of g(x) with respect to x is 3xe3x+e3x.
3xe3x+e3x
3xe3x+e3x
Step 5
Step 5.1
Set the first derivative equal to 0.
3xe3x+e3x=0
Step 5.2
Factor e3x out of 3xe3x+e3x.
Step 5.2.1
Factor e3x out of 3xe3x.
e3x(3x)+e3x=0
Step 5.2.2
Multiply by 1.
e3x(3x)+e3x⋅1=0
Step 5.2.3
Factor e3x out of e3x(3x)+e3x⋅1.
e3x(3x+1)=0
e3x(3x+1)=0
Step 5.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
e3x=0
3x+1=0
Step 5.4
Set e3x equal to 0 and solve for x.
Step 5.4.1
Set e3x equal to 0.
e3x=0
Step 5.4.2
Solve e3x=0 for x.
Step 5.4.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e3x)=ln(0)
Step 5.4.2.2
The equation cannot be solved because ln(0) is undefined.
Undefined
Step 5.4.2.3
There is no solution for e3x=0
No solution
No solution
No solution
Step 5.5
Set 3x+1 equal to 0 and solve for x.
Step 5.5.1
Set 3x+1 equal to 0.
3x+1=0
Step 5.5.2
Solve 3x+1=0 for x.
Step 5.5.2.1
Subtract 1 from both sides of the equation.
3x=-1
Step 5.5.2.2
Divide each term in 3x=-1 by 3 and simplify.
Step 5.5.2.2.1
Divide each term in 3x=-1 by 3.
3x3=-13
Step 5.5.2.2.2
Simplify the left side.
Step 5.5.2.2.2.1
Cancel the common factor of 3.
Step 5.5.2.2.2.1.1
Cancel the common factor.
3x3=-13
Step 5.5.2.2.2.1.2
Divide x by 1.
x=-13
x=-13
x=-13
Step 5.5.2.2.3
Simplify the right side.
Step 5.5.2.2.3.1
Move the negative in front of the fraction.
x=-13
x=-13
x=-13
x=-13
x=-13
Step 5.6
The final solution is all the values that make e3x(3x+1)=0 true.
x=-13
x=-13
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
x=-13
Step 8
Evaluate the second derivative at x=-13. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
9(-13)e3(-13)+6e3(-13)
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Cancel the common factor of 3.
Step 9.1.1.1
Move the leading negative in -13 into the numerator.
9(-13)e3(-13)+6e3(-13)
Step 9.1.1.2
Factor 3 out of 9.
3(3)-13e3(-13)+6e3(-13)
Step 9.1.1.3
Cancel the common factor.
3⋅3-13e3(-13)+6e3(-13)
Step 9.1.1.4
Rewrite the expression.
3⋅-1e3(-13)+6e3(-13)
3⋅-1e3(-13)+6e3(-13)
Step 9.1.2
Multiply 3 by -1.
-3e3(-13)+6e3(-13)
Step 9.1.3
Cancel the common factor of 3.
Step 9.1.3.1
Move the leading negative in -13 into the numerator.
-3e3(-13)+6e3(-13)
Step 9.1.3.2
Cancel the common factor.
-3e3(-13)+6e3(-13)
Step 9.1.3.3
Rewrite the expression.
-3e-1+6e3(-13)
-3e-1+6e3(-13)
Step 9.1.4
Rewrite the expression using the negative exponent rule b-n=1bn.
-31e+6e3(-13)
Step 9.1.5
Combine -3 and 1e.
-3e+6e3(-13)
Step 9.1.6
Move the negative in front of the fraction.
-3e+6e3(-13)
Step 9.1.7
Cancel the common factor of 3.
Step 9.1.7.1
Move the leading negative in -13 into the numerator.
-3e+6e3(-13)
Step 9.1.7.2
Cancel the common factor.
-3e+6e3(-13)
Step 9.1.7.3
Rewrite the expression.
-3e+6e-1
-3e+6e-1
Step 9.1.8
Rewrite the expression using the negative exponent rule b-n=1bn.
-3e+61e
Step 9.1.9
Combine 6 and 1e.
-3e+6e
-3e+6e
Step 9.2
Combine fractions.
Step 9.2.1
Combine the numerators over the common denominator.
-3+6e
Step 9.2.2
Add -3 and 6.
3e
3e
3e
Step 10
x=-13 is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
x=-13 is a local minimum
Step 11
Step 11.1
Replace the variable x with -13 in the expression.
g(-13)=(-13)⋅e3(-13)
Step 11.2
Simplify the result.
Step 11.2.1
Cancel the common factor of 3.
Step 11.2.1.1
Move the leading negative in -13 into the numerator.
g(-13)=-13⋅e3(-13)
Step 11.2.1.2
Cancel the common factor.
g(-13)=-13⋅e3(-13)
Step 11.2.1.3
Rewrite the expression.
g(-13)=-13⋅e-1
g(-13)=-13⋅e-1
Step 11.2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
g(-13)=-13⋅1e
Step 11.2.3
Multiply 1e by 13.
g(-13)=-1e⋅3
Step 11.2.4
Move 3 to the left of e.
g(-13)=-13e
Step 11.2.5
The final answer is -13e.
y=-13e
y=-13e
y=-13e
Step 12
These are the local extrema for g(x)=xe3x.
(-13,-13e) is a local minima
Step 13