Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=(2x^(5/2))/5-(4x^(3/2))/3-(x^2)/2+5 , [0,5]
f(x)=2x525-4x323-x22+5f(x)=2x5254x323x22+5 , [0,5][0,5]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of 2x525-4x323-x22+52x5254x323x22+5 with respect to xx is ddx[2x525]+ddx[-4x323]+ddx[-x22]+ddx[5]ddx[2x525]+ddx[4x323]+ddx[x22]+ddx[5].
ddx[2x525]+ddx[-4x323]+ddx[-x22]+ddx[5]ddx[2x525]+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2
Evaluate ddx[2x525]ddx[2x525].
Tap for more steps...
Step 1.1.1.2.1
Since 2525 is constant with respect to xx, the derivative of 2x5252x525 with respect to xx is 25ddx[x52]25ddx[x52].
25ddx[x52]+ddx[-4x323]+ddx[-x22]+ddx[5]25ddx[x52]+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=52n=52.
25(52x52-1)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x521)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.3
To write -11 as a fraction with a common denominator, multiply by 2222.
25(52x52-122)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x52122)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.4
Combine -11 and 2222.
25(52x52+-122)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x52+122)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.5
Combine the numerators over the common denominator.
25(52x5-122)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x5122)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.2.6.1
Multiply -11 by 22.
25(52x5-22)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x522)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.6.2
Subtract 22 from 55.
25(52x32)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x32)+ddx[4x323]+ddx[x22]+ddx[5]
25(52x32)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x32)+ddx[4x323]+ddx[x22]+ddx[5]
Step 1.1.1.2.7
Combine 52 and x32.
255x322+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.8
Multiply 25 by 5x322.
2(5x32)52+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.9
Multiply 5 by 2.
10x3252+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.10
Multiply 5 by 2.
10x3210+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.11
Cancel the common factor.
10x3210+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.12
Divide x32 by 1.
x32+ddx[-4x323]+ddx[-x22]+ddx[5]
x32+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.3
Evaluate ddx[-4x323].
Tap for more steps...
Step 1.1.1.3.1
Since -43 is constant with respect to x, the derivative of -4x323 with respect to x is -43ddx[x32].
x32-43ddx[x32]+ddx[-x22]+ddx[5]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=32.
x32-43(32x32-1)+ddx[-x22]+ddx[5]
Step 1.1.1.3.3
To write -1 as a fraction with a common denominator, multiply by 22.
x32-43(32x32-122)+ddx[-x22]+ddx[5]
Step 1.1.1.3.4
Combine -1 and 22.
x32-43(32x32+-122)+ddx[-x22]+ddx[5]
Step 1.1.1.3.5
Combine the numerators over the common denominator.
x32-43(32x3-122)+ddx[-x22]+ddx[5]
Step 1.1.1.3.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.3.6.1
Multiply -1 by 2.
x32-43(32x3-22)+ddx[-x22]+ddx[5]
Step 1.1.1.3.6.2
Subtract 2 from 3.
x32-43(32x12)+ddx[-x22]+ddx[5]
x32-43(32x12)+ddx[-x22]+ddx[5]
Step 1.1.1.3.7
Combine 32 and x12.
x32-433x122+ddx[-x22]+ddx[5]
Step 1.1.1.3.8
Multiply 3x122 by 43.
x32-3x12423+ddx[-x22]+ddx[5]
Step 1.1.1.3.9
Multiply 4 by 3.
x32-12x1223+ddx[-x22]+ddx[5]
Step 1.1.1.3.10
Multiply 2 by 3.
x32-12x126+ddx[-x22]+ddx[5]
Step 1.1.1.3.11
Factor 6 out of 12x12.
x32-6(2x12)6+ddx[-x22]+ddx[5]
Step 1.1.1.3.12
Cancel the common factors.
Tap for more steps...
Step 1.1.1.3.12.1
Factor 6 out of 6.
x32-6(2x12)6(1)+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.2
Cancel the common factor.
x32-6(2x12)61+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.3
Rewrite the expression.
x32-2x121+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.4
Divide 2x12 by 1.
x32-(2x12)+ddx[-x22]+ddx[5]
x32-(2x12)+ddx[-x22]+ddx[5]
Step 1.1.1.3.13
Multiply 2 by -1.
x32-2x12+ddx[-x22]+ddx[5]
x32-2x12+ddx[-x22]+ddx[5]
Step 1.1.1.4
Evaluate ddx[-x22].
Tap for more steps...
Step 1.1.1.4.1
Since -12 is constant with respect to x, the derivative of -x22 with respect to x is -12ddx[x2].
x32-2x12-12ddx[x2]+ddx[5]
Step 1.1.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x32-2x12-12(2x)+ddx[5]
Step 1.1.1.4.3
Multiply 2 by -1.
x32-2x12-2(12)x+ddx[5]
Step 1.1.1.4.4
Combine -2 and 12.
x32-2x12+-22x+ddx[5]
Step 1.1.1.4.5
Combine -22 and x.
x32-2x12+-2x2+ddx[5]
Step 1.1.1.4.6
Cancel the common factor of -2 and 2.
Tap for more steps...
Step 1.1.1.4.6.1
Factor 2 out of -2x.
x32-2x12+2(-x)2+ddx[5]
Step 1.1.1.4.6.2
Cancel the common factors.
Tap for more steps...
Step 1.1.1.4.6.2.1
Factor 2 out of 2.
x32-2x12+2(-x)2(1)+ddx[5]
Step 1.1.1.4.6.2.2
Cancel the common factor.
x32-2x12+2(-x)21+ddx[5]
Step 1.1.1.4.6.2.3
Rewrite the expression.
x32-2x12+-x1+ddx[5]
Step 1.1.1.4.6.2.4
Divide -x by 1.
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
Step 1.1.1.5
Since 5 is constant with respect to x, the derivative of 5 with respect to x is 0.
x32-2x12-x+0
Step 1.1.1.6
Simplify.
Tap for more steps...
Step 1.1.1.6.1
Add x32-2x12-x and 0.
x32-2x12-x
Step 1.1.1.6.2
Reorder terms.
f(x)=-x+x32-2x12
f(x)=-x+x32-2x12
f(x)=-x+x32-2x12
Step 1.1.2
The first derivative of f(x) with respect to x is -x+x32-2x12.
-x+x32-2x12
-x+x32-2x12
Step 1.2
Set the first derivative equal to 0 then solve the equation -x+x32-2x12=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
-x+x32-2x12=0
Step 1.2.2
Find a common factor x12 that is present in each term.
-1(x12)2(x12)3-2x12
Step 1.2.3
Substitute u for x12.
-1(u)2(u)3-2u=0
Step 1.2.4
Solve for u.
Tap for more steps...
Step 1.2.4.1
Simplify each term.
Tap for more steps...
Step 1.2.4.1.1
Multiply (u)2 by (u)3 by adding the exponents.
Tap for more steps...
Step 1.2.4.1.1.1
Move (u)3.
-1((u)3(u)2)-2u=0
Step 1.2.4.1.1.2
Use the power rule aman=am+n to combine exponents.
-1u3+2-2u=0
Step 1.2.4.1.1.3
Add 3 and 2.
-1u5-2u=0
-1u5-2u=0
Step 1.2.4.1.2
Rewrite -1u5 as -u5.
-u5-2u=0
-u5-2u=0
Step 1.2.4.2
Factor -u out of -u5-2u.
Tap for more steps...
Step 1.2.4.2.1
Factor -u out of -u5.
-uu4-2u=0
Step 1.2.4.2.2
Factor -u out of -2u.
-uu4-u2=0
Step 1.2.4.2.3
Factor -u out of -u(u4)-u(2).
-u(u4+2)=0
-u(u4+2)=0
Step 1.2.4.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u=0
u4+2=0
Step 1.2.4.4
Set u equal to 0.
u=0
Step 1.2.4.5
Set u4+2 equal to 0 and solve for u.
Tap for more steps...
Step 1.2.4.5.1
Set u4+2 equal to 0.
u4+2=0
Step 1.2.4.5.2
Solve u4+2=0 for u.
Tap for more steps...
Step 1.2.4.5.2.1
Subtract 2 from both sides of the equation.
u4=-2
Step 1.2.4.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±4-2
Step 1.2.4.5.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.4.5.2.3.1
First, use the positive value of the ± to find the first solution.
u=4-2
Step 1.2.4.5.2.3.2
Next, use the negative value of the ± to find the second solution.
u=-4-2
Step 1.2.4.5.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
u=4-2,-4-2
u=4-2,-4-2
u=4-2,-4-2
u=4-2,-4-2
Step 1.2.4.6
The final solution is all the values that make -u(u4+2)=0 true.
u=0,4-2,-4-2
u=0,4-2,-4-2
Step 1.2.5
Substitute x for u.
x12=0,4-2,-4-2
Step 1.2.6
Solve for x12=0 for x.
Tap for more steps...
Step 1.2.6.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=02
Step 1.2.6.2
Simplify the exponent.
Tap for more steps...
Step 1.2.6.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.6.2.1.1
Simplify (x12)2.
Tap for more steps...
Step 1.2.6.2.1.1.1
Multiply the exponents in (x12)2.
Tap for more steps...
Step 1.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x122=02
Step 1.2.6.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.6.2.1.1.1.2.1
Cancel the common factor.
x122=02
Step 1.2.6.2.1.1.1.2.2
Rewrite the expression.
x1=02
x1=02
x1=02
Step 1.2.6.2.1.1.2
Simplify.
x=02
x=02
x=02
Step 1.2.6.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.6.2.2.1
Raising 0 to any positive power yields 0.
x=0
x=0
x=0
x=0
Step 1.2.7
Solve for x12=4-2 for x.
Tap for more steps...
Step 1.2.7.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=4-22
Step 1.2.7.2
Simplify the exponent.
Tap for more steps...
Step 1.2.7.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.7.2.1.1
Simplify (x12)2.
Tap for more steps...
Step 1.2.7.2.1.1.1
Multiply the exponents in (x12)2.
Tap for more steps...
Step 1.2.7.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x122=4-22
Step 1.2.7.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.7.2.1.1.1.2.1
Cancel the common factor.
x122=4-22
Step 1.2.7.2.1.1.1.2.2
Rewrite the expression.
x1=4-22
x1=4-22
x1=4-22
Step 1.2.7.2.1.1.2
Simplify.
x=4-22
x=4-22
x=4-22
Step 1.2.7.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.7.2.2.1
Simplify 4-22.
Tap for more steps...
Step 1.2.7.2.2.1.1
Rewrite 4-22 as -2.
Tap for more steps...
Step 1.2.7.2.2.1.1.1
Use nax=axn to rewrite 4-2 as (-2)14.
x=((-2)14)2
Step 1.2.7.2.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
x=(-2)142
Step 1.2.7.2.2.1.1.3
Combine 14 and 2.
x=(-2)24
Step 1.2.7.2.2.1.1.4
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 1.2.7.2.2.1.1.4.1
Factor 2 out of 2.
x=(-2)2(1)4
Step 1.2.7.2.2.1.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.2.7.2.2.1.1.4.2.1
Factor 2 out of 4.
x=(-2)2122
Step 1.2.7.2.2.1.1.4.2.2
Cancel the common factor.
x=(-2)2122
Step 1.2.7.2.2.1.1.4.2.3
Rewrite the expression.
x=(-2)12
x=(-2)12
x=(-2)12
Step 1.2.7.2.2.1.1.5
Rewrite (-2)12 as -2.
x=-2
x=-2
Step 1.2.7.2.2.1.2
Rewrite -2 as -1(2).
x=-1(2)
Step 1.2.7.2.2.1.3
Rewrite -1(2) as -12.
x=-12
Step 1.2.7.2.2.1.4
Rewrite -1 as i.
x=i2
x=i2
x=i2
x=i2
x=i2
Step 1.2.8
List all of the solutions.
x=0,i2,i2
x=0,i2,i2
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 1.3.1.1
Apply the rule xmn=nxm to rewrite the exponentiation as a radical.
-x+x3-2x12
Step 1.3.1.2
Apply the rule xmn=nxm to rewrite the exponentiation as a radical.
-x+x3-2x1
Step 1.3.1.3
Anything raised to 1 is the base itself.
-x+x3-2x
-x+x3-2x
Step 1.3.2
Set the radicand in x3 less than 0 to find where the expression is undefined.
x3<0
Step 1.3.3
Solve for x.
Tap for more steps...
Step 1.3.3.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
3x3<30
Step 1.3.3.2
Simplify the equation.
Tap for more steps...
Step 1.3.3.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.1.1
Pull terms out from under the radical.
x<30
x<30
Step 1.3.3.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify 30.
Tap for more steps...
Step 1.3.3.2.2.1.1
Rewrite 0 as 03.
x<303
Step 1.3.3.2.2.1.2
Pull terms out from under the radical.
x<0
x<0
x<0
x<0
x<0
Step 1.3.4
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
x<0
(-,0)
x<0
(-,0)
Step 1.4
Evaluate 2x525-4x323-x22+5 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
2(0)525-4(0)323-(0)22+5
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.1.1.1
Rewrite 0 as 02.
2(02)525-4(0)323-(0)22+5
Step 1.4.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
202(52)5-4(0)323-(0)22+5
Step 1.4.1.2.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 1.4.1.2.1.1.3.1
Cancel the common factor.
202(52)5-4(0)323-(0)22+5
Step 1.4.1.2.1.1.3.2
Rewrite the expression.
2055-4(0)323-(0)22+5
2055-4(0)323-(0)22+5
Step 1.4.1.2.1.1.4
Raising 0 to any positive power yields 0.
205-4(0)323-(0)22+5
205-4(0)323-(0)22+5
Step 1.4.1.2.1.2
Multiply 2 by 0.
05-4(0)323-(0)22+5
Step 1.4.1.2.1.3
Divide 0 by 5.
0-4(0)323-(0)22+5
Step 1.4.1.2.1.4
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.1.4.1
Rewrite 0 as 02.
0-4(02)323-(0)22+5
Step 1.4.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-402(32)3-(0)22+5
Step 1.4.1.2.1.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 1.4.1.2.1.4.3.1
Cancel the common factor.
0-402(32)3-(0)22+5
Step 1.4.1.2.1.4.3.2
Rewrite the expression.
0-4033-(0)22+5
0-4033-(0)22+5
Step 1.4.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-403-(0)22+5
0-403-(0)22+5
Step 1.4.1.2.1.5
Multiply 4 by 0.
0-03-(0)22+5
Step 1.4.1.2.1.6
Divide 0 by 3.
0-0-(0)22+5
Step 1.4.1.2.1.7
Multiply -1 by 0.
0+0-(0)22+5
Step 1.4.1.2.1.8
Raising 0 to any positive power yields 0.
0+0-02+5
Step 1.4.1.2.1.9
Divide 0 by 2.
0+0-0+5
Step 1.4.1.2.1.10
Multiply -1 by 0.
0+0+0+5
0+0+0+5
Step 1.4.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 1.4.1.2.2.1
Add 0 and 0.
0+0+5
Step 1.4.1.2.2.2
Add 0 and 0.
0+5
Step 1.4.1.2.2.3
Add 0 and 5.
5
5
5
5
Step 1.4.2
List all of the points.
(0,5)
(0,5)
(0,5)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=0.
Tap for more steps...
Step 2.1.1
Substitute 0 for x.
2(0)525-4(0)323-(0)22+5
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.1.1
Rewrite 0 as 02.
2(02)525-4(0)323-(0)22+5
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
202(52)5-4(0)323-(0)22+5
Step 2.1.2.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.2.1.1.3.1
Cancel the common factor.
202(52)5-4(0)323-(0)22+5
Step 2.1.2.1.1.3.2
Rewrite the expression.
2055-4(0)323-(0)22+5
2055-4(0)323-(0)22+5
Step 2.1.2.1.1.4
Raising 0 to any positive power yields 0.
205-4(0)323-(0)22+5
205-4(0)323-(0)22+5
Step 2.1.2.1.2
Multiply 2 by 0.
05-4(0)323-(0)22+5
Step 2.1.2.1.3
Divide 0 by 5.
0-4(0)323-(0)22+5
Step 2.1.2.1.4
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.4.1
Rewrite 0 as 02.
0-4(02)323-(0)22+5
Step 2.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-402(32)3-(0)22+5
Step 2.1.2.1.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.2.1.4.3.1
Cancel the common factor.
0-402(32)3-(0)22+5
Step 2.1.2.1.4.3.2
Rewrite the expression.
0-4033-(0)22+5
0-4033-(0)22+5
Step 2.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-403-(0)22+5
0-403-(0)22+5
Step 2.1.2.1.5
Multiply 4 by 0.
0-03-(0)22+5
Step 2.1.2.1.6
Divide 0 by 3.
0-0-(0)22+5
Step 2.1.2.1.7
Multiply -1 by 0.
0+0-(0)22+5
Step 2.1.2.1.8
Raising 0 to any positive power yields 0.
0+0-02+5
Step 2.1.2.1.9
Divide 0 by 2.
0+0-0+5
Step 2.1.2.1.10
Multiply -1 by 0.
0+0+0+5
0+0+0+5
Step 2.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 2.1.2.2.1
Add 0 and 0.
0+0+5
Step 2.1.2.2.2
Add 0 and 0.
0+5
Step 2.1.2.2.3
Add 0 and 5.
5
5
5
5
Step 2.2
Evaluate at x=5.
Tap for more steps...
Step 2.2.1
Substitute 5 for x.
2(5)525-4(5)323-(5)22+5
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Move 51 to the numerator using the negative exponent rule 1bn=b-n.
2(5)525-1-4(5)323-(5)22+5
Step 2.2.2.1.2
Multiply (5)52 by 5-1 by adding the exponents.
Tap for more steps...
Step 2.2.2.1.2.1
Move 5-1.
2(5-1(5)52)-4(5)323-(5)22+5
Step 2.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
25-1+52-4(5)323-(5)22+5
Step 2.2.2.1.2.3
To write -1 as a fraction with a common denominator, multiply by 22.
25-122+52-4(5)323-(5)22+5
Step 2.2.2.1.2.4
Combine -1 and 22.
25-122+52-4(5)323-(5)22+5
Step 2.2.2.1.2.5
Combine the numerators over the common denominator.
25-12+52-4(5)323-(5)22+5
Step 2.2.2.1.2.6
Simplify the numerator.
Tap for more steps...
Step 2.2.2.1.2.6.1
Multiply -1 by 2.
25-2+52-4(5)323-(5)22+5
Step 2.2.2.1.2.6.2
Add -2 and 5.
2532-4(5)323-(5)22+5
2532-4(5)323-(5)22+5
2532-4(5)323-(5)22+5
Step 2.2.2.1.3
Raise 5 to the power of 2.
2532-45323-252+5
2532-45323-252+5
Step 2.2.2.2
To write 2532 as a fraction with a common denominator, multiply by 33.
253233-45323-252+5
Step 2.2.2.3
Combine fractions.
Tap for more steps...
Step 2.2.2.3.1
Combine 2532 and 33.
253233-45323-252+5
Step 2.2.2.3.2
Combine the numerators over the common denominator.
25323-45323-252+5
25323-45323-252+5
Step 2.2.2.4
Simplify the numerator.
Tap for more steps...
Step 2.2.2.4.1
Multiply 3 by 2.
6532-45323-252+5
Step 2.2.2.4.2
Subtract 4532 from 6532.
25323-252+5
25323-252+5
Step 2.2.2.5
To write 5 as a fraction with a common denominator, multiply by 33.
25323+533-252
Step 2.2.2.6
Combine 5 and 33.
25323+533-252
Step 2.2.2.7
Simplify the expression.
Tap for more steps...
Step 2.2.2.7.1
Combine the numerators over the common denominator.
2532+533-252
Step 2.2.2.7.2
Multiply 5 by 3.
2532+153-252
2532+153-252
Step 2.2.2.8
To write 2532+153 as a fraction with a common denominator, multiply by 22.
2532+15322-252
Step 2.2.2.9
To write -252 as a fraction with a common denominator, multiply by 33.
2532+15322-25233
Step 2.2.2.10
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.2.2.10.1
Multiply 2532+153 by 22.
(2532+15)232-25233
Step 2.2.2.10.2
Multiply 3 by 2.
(2532+15)26-25233
Step 2.2.2.10.3
Multiply 252 by 33.
(2532+15)26-25323
Step 2.2.2.10.4
Multiply 2 by 3.
(2532+15)26-2536
(2532+15)26-2536
Step 2.2.2.11
Combine the numerators over the common denominator.
(2532+15)2-2536
Step 2.2.2.12
Simplify the numerator.
Tap for more steps...
Step 2.2.2.12.1
Apply the distributive property.
25322+152-2536
Step 2.2.2.12.2
Multiply 2 by 2.
4532+152-2536
Step 2.2.2.12.3
Multiply 15 by 2.
4532+30-2536
Step 2.2.2.12.4
Multiply -25 by 3.
4532+30-756
Step 2.2.2.12.5
Subtract 75 from 30.
4532-456
4532-456
4532-456
4532-456
Step 2.3
List all of the points.
(0,5),(5,4532-456)
(0,5),(5,4532-456)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,5)
Absolute Minimum: (5,4532-456)
Step 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]