Enter a problem...
Calculus Examples
f(x)=2x525-4x323-x22+5f(x)=2x525−4x323−x22+5 , [0,5][0,5]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 2x525-4x323-x22+52x525−4x323−x22+5 with respect to xx is ddx[2x525]+ddx[-4x323]+ddx[-x22]+ddx[5]ddx[2x525]+ddx[−4x323]+ddx[−x22]+ddx[5].
ddx[2x525]+ddx[-4x323]+ddx[-x22]+ddx[5]ddx[2x525]+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2
Evaluate ddx[2x525]ddx[2x525].
Step 1.1.1.2.1
Since 2525 is constant with respect to xx, the derivative of 2x5252x525 with respect to xx is 25ddx[x52]25ddx[x52].
25ddx[x52]+ddx[-4x323]+ddx[-x22]+ddx[5]25ddx[x52]+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=52n=52.
25(52x52-1)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x52−1)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.3
To write -1−1 as a fraction with a common denominator, multiply by 2222.
25(52x52-1⋅22)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x52−1⋅22)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.4
Combine -1−1 and 2222.
25(52x52+-1⋅22)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x52+−1⋅22)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.5
Combine the numerators over the common denominator.
25(52x5-1⋅22)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x5−1⋅22)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.6
Simplify the numerator.
Step 1.1.1.2.6.1
Multiply -1−1 by 22.
25(52x5-22)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x5−22)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.6.2
Subtract 22 from 55.
25(52x32)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x32)+ddx[−4x323]+ddx[−x22]+ddx[5]
25(52x32)+ddx[-4x323]+ddx[-x22]+ddx[5]25(52x32)+ddx[−4x323]+ddx[−x22]+ddx[5]
Step 1.1.1.2.7
Combine 52 and x32.
25⋅5x322+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.8
Multiply 25 by 5x322.
2(5x32)5⋅2+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.9
Multiply 5 by 2.
10x325⋅2+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.10
Multiply 5 by 2.
10x3210+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.11
Cancel the common factor.
10x3210+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.2.12
Divide x32 by 1.
x32+ddx[-4x323]+ddx[-x22]+ddx[5]
x32+ddx[-4x323]+ddx[-x22]+ddx[5]
Step 1.1.1.3
Evaluate ddx[-4x323].
Step 1.1.1.3.1
Since -43 is constant with respect to x, the derivative of -4x323 with respect to x is -43ddx[x32].
x32-43ddx[x32]+ddx[-x22]+ddx[5]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=32.
x32-43(32x32-1)+ddx[-x22]+ddx[5]
Step 1.1.1.3.3
To write -1 as a fraction with a common denominator, multiply by 22.
x32-43(32x32-1⋅22)+ddx[-x22]+ddx[5]
Step 1.1.1.3.4
Combine -1 and 22.
x32-43(32x32+-1⋅22)+ddx[-x22]+ddx[5]
Step 1.1.1.3.5
Combine the numerators over the common denominator.
x32-43(32x3-1⋅22)+ddx[-x22]+ddx[5]
Step 1.1.1.3.6
Simplify the numerator.
Step 1.1.1.3.6.1
Multiply -1 by 2.
x32-43(32x3-22)+ddx[-x22]+ddx[5]
Step 1.1.1.3.6.2
Subtract 2 from 3.
x32-43(32x12)+ddx[-x22]+ddx[5]
x32-43(32x12)+ddx[-x22]+ddx[5]
Step 1.1.1.3.7
Combine 32 and x12.
x32-43⋅3x122+ddx[-x22]+ddx[5]
Step 1.1.1.3.8
Multiply 3x122 by 43.
x32-3x12⋅42⋅3+ddx[-x22]+ddx[5]
Step 1.1.1.3.9
Multiply 4 by 3.
x32-12x122⋅3+ddx[-x22]+ddx[5]
Step 1.1.1.3.10
Multiply 2 by 3.
x32-12x126+ddx[-x22]+ddx[5]
Step 1.1.1.3.11
Factor 6 out of 12x12.
x32-6(2x12)6+ddx[-x22]+ddx[5]
Step 1.1.1.3.12
Cancel the common factors.
Step 1.1.1.3.12.1
Factor 6 out of 6.
x32-6(2x12)6(1)+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.2
Cancel the common factor.
x32-6(2x12)6⋅1+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.3
Rewrite the expression.
x32-2x121+ddx[-x22]+ddx[5]
Step 1.1.1.3.12.4
Divide 2x12 by 1.
x32-(2x12)+ddx[-x22]+ddx[5]
x32-(2x12)+ddx[-x22]+ddx[5]
Step 1.1.1.3.13
Multiply 2 by -1.
x32-2x12+ddx[-x22]+ddx[5]
x32-2x12+ddx[-x22]+ddx[5]
Step 1.1.1.4
Evaluate ddx[-x22].
Step 1.1.1.4.1
Since -12 is constant with respect to x, the derivative of -x22 with respect to x is -12ddx[x2].
x32-2x12-12ddx[x2]+ddx[5]
Step 1.1.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x32-2x12-12(2x)+ddx[5]
Step 1.1.1.4.3
Multiply 2 by -1.
x32-2x12-2(12)x+ddx[5]
Step 1.1.1.4.4
Combine -2 and 12.
x32-2x12+-22x+ddx[5]
Step 1.1.1.4.5
Combine -22 and x.
x32-2x12+-2x2+ddx[5]
Step 1.1.1.4.6
Cancel the common factor of -2 and 2.
Step 1.1.1.4.6.1
Factor 2 out of -2x.
x32-2x12+2(-x)2+ddx[5]
Step 1.1.1.4.6.2
Cancel the common factors.
Step 1.1.1.4.6.2.1
Factor 2 out of 2.
x32-2x12+2(-x)2(1)+ddx[5]
Step 1.1.1.4.6.2.2
Cancel the common factor.
x32-2x12+2(-x)2⋅1+ddx[5]
Step 1.1.1.4.6.2.3
Rewrite the expression.
x32-2x12+-x1+ddx[5]
Step 1.1.1.4.6.2.4
Divide -x by 1.
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
x32-2x12-x+ddx[5]
Step 1.1.1.5
Since 5 is constant with respect to x, the derivative of 5 with respect to x is 0.
x32-2x12-x+0
Step 1.1.1.6
Simplify.
Step 1.1.1.6.1
Add x32-2x12-x and 0.
x32-2x12-x
Step 1.1.1.6.2
Reorder terms.
f′(x)=-x+x32-2x12
f′(x)=-x+x32-2x12
f′(x)=-x+x32-2x12
Step 1.1.2
The first derivative of f(x) with respect to x is -x+x32-2x12.
-x+x32-2x12
-x+x32-2x12
Step 1.2
Set the first derivative equal to 0 then solve the equation -x+x32-2x12=0.
Step 1.2.1
Set the first derivative equal to 0.
-x+x32-2x12=0
Step 1.2.2
Find a common factor x12 that is present in each term.
-1(x12)2(x12)3-2x12
Step 1.2.3
Substitute u for x12.
-1(u)2(u)3-2u=0
Step 1.2.4
Solve for u.
Step 1.2.4.1
Simplify each term.
Step 1.2.4.1.1
Multiply (u)2 by (u)3 by adding the exponents.
Step 1.2.4.1.1.1
Move (u)3.
-1((u)3(u)2)-2u=0
Step 1.2.4.1.1.2
Use the power rule aman=am+n to combine exponents.
-1u3+2-2u=0
Step 1.2.4.1.1.3
Add 3 and 2.
-1u5-2u=0
-1u5-2u=0
Step 1.2.4.1.2
Rewrite -1u5 as -u5.
-u5-2u=0
-u5-2u=0
Step 1.2.4.2
Factor -u out of -u5-2u.
Step 1.2.4.2.1
Factor -u out of -u5.
-u⋅u4-2u=0
Step 1.2.4.2.2
Factor -u out of -2u.
-u⋅u4-u⋅2=0
Step 1.2.4.2.3
Factor -u out of -u(u4)-u(2).
-u(u4+2)=0
-u(u4+2)=0
Step 1.2.4.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u=0
u4+2=0
Step 1.2.4.4
Set u equal to 0.
u=0
Step 1.2.4.5
Set u4+2 equal to 0 and solve for u.
Step 1.2.4.5.1
Set u4+2 equal to 0.
u4+2=0
Step 1.2.4.5.2
Solve u4+2=0 for u.
Step 1.2.4.5.2.1
Subtract 2 from both sides of the equation.
u4=-2
Step 1.2.4.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±4√-2
Step 1.2.4.5.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.4.5.2.3.1
First, use the positive value of the ± to find the first solution.
u=4√-2
Step 1.2.4.5.2.3.2
Next, use the negative value of the ± to find the second solution.
u=-4√-2
Step 1.2.4.5.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
u=4√-2,-4√-2
u=4√-2,-4√-2
u=4√-2,-4√-2
u=4√-2,-4√-2
Step 1.2.4.6
The final solution is all the values that make -u(u4+2)=0 true.
u=0,4√-2,-4√-2
u=0,4√-2,-4√-2
Step 1.2.5
Substitute x for u.
x12=0,4√-2,-4√-2
Step 1.2.6
Solve for x12=0 for x.
Step 1.2.6.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=02
Step 1.2.6.2
Simplify the exponent.
Step 1.2.6.2.1
Simplify the left side.
Step 1.2.6.2.1.1
Simplify (x12)2.
Step 1.2.6.2.1.1.1
Multiply the exponents in (x12)2.
Step 1.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x12⋅2=02
Step 1.2.6.2.1.1.1.2
Cancel the common factor of 2.
Step 1.2.6.2.1.1.1.2.1
Cancel the common factor.
x12⋅2=02
Step 1.2.6.2.1.1.1.2.2
Rewrite the expression.
x1=02
x1=02
x1=02
Step 1.2.6.2.1.1.2
Simplify.
x=02
x=02
x=02
Step 1.2.6.2.2
Simplify the right side.
Step 1.2.6.2.2.1
Raising 0 to any positive power yields 0.
x=0
x=0
x=0
x=0
Step 1.2.7
Solve for x12=4√-2 for x.
Step 1.2.7.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=4√-22
Step 1.2.7.2
Simplify the exponent.
Step 1.2.7.2.1
Simplify the left side.
Step 1.2.7.2.1.1
Simplify (x12)2.
Step 1.2.7.2.1.1.1
Multiply the exponents in (x12)2.
Step 1.2.7.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x12⋅2=4√-22
Step 1.2.7.2.1.1.1.2
Cancel the common factor of 2.
Step 1.2.7.2.1.1.1.2.1
Cancel the common factor.
x12⋅2=4√-22
Step 1.2.7.2.1.1.1.2.2
Rewrite the expression.
x1=4√-22
x1=4√-22
x1=4√-22
Step 1.2.7.2.1.1.2
Simplify.
x=4√-22
x=4√-22
x=4√-22
Step 1.2.7.2.2
Simplify the right side.
Step 1.2.7.2.2.1
Simplify 4√-22.
Step 1.2.7.2.2.1.1
Rewrite 4√-22 as √-2.
Step 1.2.7.2.2.1.1.1
Use n√ax=axn to rewrite 4√-2 as (-2)14.
x=((-2)14)2
Step 1.2.7.2.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
x=(-2)14⋅2
Step 1.2.7.2.2.1.1.3
Combine 14 and 2.
x=(-2)24
Step 1.2.7.2.2.1.1.4
Cancel the common factor of 2 and 4.
Step 1.2.7.2.2.1.1.4.1
Factor 2 out of 2.
x=(-2)2(1)4
Step 1.2.7.2.2.1.1.4.2
Cancel the common factors.
Step 1.2.7.2.2.1.1.4.2.1
Factor 2 out of 4.
x=(-2)2⋅12⋅2
Step 1.2.7.2.2.1.1.4.2.2
Cancel the common factor.
x=(-2)2⋅12⋅2
Step 1.2.7.2.2.1.1.4.2.3
Rewrite the expression.
x=(-2)12
x=(-2)12
x=(-2)12
Step 1.2.7.2.2.1.1.5
Rewrite (-2)12 as √-2.
x=√-2
x=√-2
Step 1.2.7.2.2.1.2
Rewrite -2 as -1(2).
x=√-1(2)
Step 1.2.7.2.2.1.3
Rewrite √-1(2) as √-1⋅√2.
x=√-1⋅√2
Step 1.2.7.2.2.1.4
Rewrite √-1 as i.
x=i√2
x=i√2
x=i√2
x=i√2
x=i√2
Step 1.2.8
List all of the solutions.
x=0,i√2,i√2
x=0,i√2,i√2
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
-x+√x3-2x12
Step 1.3.1.2
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
-x+√x3-2√x1
Step 1.3.1.3
Anything raised to 1 is the base itself.
-x+√x3-2√x
-x+√x3-2√x
Step 1.3.2
Set the radicand in √x3 less than 0 to find where the expression is undefined.
x3<0
Step 1.3.3
Solve for x.
Step 1.3.3.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
3√x3<3√0
Step 1.3.3.2
Simplify the equation.
Step 1.3.3.2.1
Simplify the left side.
Step 1.3.3.2.1.1
Pull terms out from under the radical.
x<3√0
x<3√0
Step 1.3.3.2.2
Simplify the right side.
Step 1.3.3.2.2.1
Simplify 3√0.
Step 1.3.3.2.2.1.1
Rewrite 0 as 03.
x<3√03
Step 1.3.3.2.2.1.2
Pull terms out from under the radical.
x<0
x<0
x<0
x<0
x<0
Step 1.3.4
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
x<0
(-∞,0)
x<0
(-∞,0)
Step 1.4
Evaluate 2x525-4x323-x22+5 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
2(0)525-4(0)323-(0)22+5
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Simplify the numerator.
Step 1.4.1.2.1.1.1
Rewrite 0 as 02.
2⋅(02)525-4(0)323-(0)22+5
Step 1.4.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2⋅02(52)5-4(0)323-(0)22+5
Step 1.4.1.2.1.1.3
Cancel the common factor of 2.
Step 1.4.1.2.1.1.3.1
Cancel the common factor.
2⋅02(52)5-4(0)323-(0)22+5
Step 1.4.1.2.1.1.3.2
Rewrite the expression.
2⋅055-4(0)323-(0)22+5
2⋅055-4(0)323-(0)22+5
Step 1.4.1.2.1.1.4
Raising 0 to any positive power yields 0.
2⋅05-4(0)323-(0)22+5
2⋅05-4(0)323-(0)22+5
Step 1.4.1.2.1.2
Multiply 2 by 0.
05-4(0)323-(0)22+5
Step 1.4.1.2.1.3
Divide 0 by 5.
0-4(0)323-(0)22+5
Step 1.4.1.2.1.4
Simplify the numerator.
Step 1.4.1.2.1.4.1
Rewrite 0 as 02.
0-4⋅(02)323-(0)22+5
Step 1.4.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-4⋅02(32)3-(0)22+5
Step 1.4.1.2.1.4.3
Cancel the common factor of 2.
Step 1.4.1.2.1.4.3.1
Cancel the common factor.
0-4⋅02(32)3-(0)22+5
Step 1.4.1.2.1.4.3.2
Rewrite the expression.
0-4⋅033-(0)22+5
0-4⋅033-(0)22+5
Step 1.4.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-4⋅03-(0)22+5
0-4⋅03-(0)22+5
Step 1.4.1.2.1.5
Multiply 4 by 0.
0-03-(0)22+5
Step 1.4.1.2.1.6
Divide 0 by 3.
0-0-(0)22+5
Step 1.4.1.2.1.7
Multiply -1 by 0.
0+0-(0)22+5
Step 1.4.1.2.1.8
Raising 0 to any positive power yields 0.
0+0-02+5
Step 1.4.1.2.1.9
Divide 0 by 2.
0+0-0+5
Step 1.4.1.2.1.10
Multiply -1 by 0.
0+0+0+5
0+0+0+5
Step 1.4.1.2.2
Simplify by adding numbers.
Step 1.4.1.2.2.1
Add 0 and 0.
0+0+5
Step 1.4.1.2.2.2
Add 0 and 0.
0+5
Step 1.4.1.2.2.3
Add 0 and 5.
5
5
5
5
Step 1.4.2
List all of the points.
(0,5)
(0,5)
(0,5)
Step 2
Step 2.1
Evaluate at x=0.
Step 2.1.1
Substitute 0 for x.
2(0)525-4(0)323-(0)22+5
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Simplify the numerator.
Step 2.1.2.1.1.1
Rewrite 0 as 02.
2⋅(02)525-4(0)323-(0)22+5
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2⋅02(52)5-4(0)323-(0)22+5
Step 2.1.2.1.1.3
Cancel the common factor of 2.
Step 2.1.2.1.1.3.1
Cancel the common factor.
2⋅02(52)5-4(0)323-(0)22+5
Step 2.1.2.1.1.3.2
Rewrite the expression.
2⋅055-4(0)323-(0)22+5
2⋅055-4(0)323-(0)22+5
Step 2.1.2.1.1.4
Raising 0 to any positive power yields 0.
2⋅05-4(0)323-(0)22+5
2⋅05-4(0)323-(0)22+5
Step 2.1.2.1.2
Multiply 2 by 0.
05-4(0)323-(0)22+5
Step 2.1.2.1.3
Divide 0 by 5.
0-4(0)323-(0)22+5
Step 2.1.2.1.4
Simplify the numerator.
Step 2.1.2.1.4.1
Rewrite 0 as 02.
0-4⋅(02)323-(0)22+5
Step 2.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-4⋅02(32)3-(0)22+5
Step 2.1.2.1.4.3
Cancel the common factor of 2.
Step 2.1.2.1.4.3.1
Cancel the common factor.
0-4⋅02(32)3-(0)22+5
Step 2.1.2.1.4.3.2
Rewrite the expression.
0-4⋅033-(0)22+5
0-4⋅033-(0)22+5
Step 2.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-4⋅03-(0)22+5
0-4⋅03-(0)22+5
Step 2.1.2.1.5
Multiply 4 by 0.
0-03-(0)22+5
Step 2.1.2.1.6
Divide 0 by 3.
0-0-(0)22+5
Step 2.1.2.1.7
Multiply -1 by 0.
0+0-(0)22+5
Step 2.1.2.1.8
Raising 0 to any positive power yields 0.
0+0-02+5
Step 2.1.2.1.9
Divide 0 by 2.
0+0-0+5
Step 2.1.2.1.10
Multiply -1 by 0.
0+0+0+5
0+0+0+5
Step 2.1.2.2
Simplify by adding numbers.
Step 2.1.2.2.1
Add 0 and 0.
0+0+5
Step 2.1.2.2.2
Add 0 and 0.
0+5
Step 2.1.2.2.3
Add 0 and 5.
5
5
5
5
Step 2.2
Evaluate at x=5.
Step 2.2.1
Substitute 5 for x.
2(5)525-4(5)323-(5)22+5
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Move 51 to the numerator using the negative exponent rule 1bn=b-n.
2(5)52⋅5-1-4(5)323-(5)22+5
Step 2.2.2.1.2
Multiply (5)52 by 5-1 by adding the exponents.
Step 2.2.2.1.2.1
Move 5-1.
2(5-1(5)52)-4(5)323-(5)22+5
Step 2.2.2.1.2.2
Use the power rule aman=am+n to combine exponents.
2⋅5-1+52-4(5)323-(5)22+5
Step 2.2.2.1.2.3
To write -1 as a fraction with a common denominator, multiply by 22.
2⋅5-1⋅22+52-4(5)323-(5)22+5
Step 2.2.2.1.2.4
Combine -1 and 22.
2⋅5-1⋅22+52-4(5)323-(5)22+5
Step 2.2.2.1.2.5
Combine the numerators over the common denominator.
2⋅5-1⋅2+52-4(5)323-(5)22+5
Step 2.2.2.1.2.6
Simplify the numerator.
Step 2.2.2.1.2.6.1
Multiply -1 by 2.
2⋅5-2+52-4(5)323-(5)22+5
Step 2.2.2.1.2.6.2
Add -2 and 5.
2⋅532-4(5)323-(5)22+5
2⋅532-4(5)323-(5)22+5
2⋅532-4(5)323-(5)22+5
Step 2.2.2.1.3
Raise 5 to the power of 2.
2⋅532-4⋅5323-252+5
2⋅532-4⋅5323-252+5
Step 2.2.2.2
To write 2⋅532 as a fraction with a common denominator, multiply by 33.
2⋅532⋅33-4⋅5323-252+5
Step 2.2.2.3
Combine fractions.
Step 2.2.2.3.1
Combine 2⋅532 and 33.
2⋅532⋅33-4⋅5323-252+5
Step 2.2.2.3.2
Combine the numerators over the common denominator.
2⋅532⋅3-4⋅5323-252+5
2⋅532⋅3-4⋅5323-252+5
Step 2.2.2.4
Simplify the numerator.
Step 2.2.2.4.1
Multiply 3 by 2.
6⋅532-4⋅5323-252+5
Step 2.2.2.4.2
Subtract 4⋅532 from 6⋅532.
2⋅5323-252+5
2⋅5323-252+5
Step 2.2.2.5
To write 5 as a fraction with a common denominator, multiply by 33.
2⋅5323+5⋅33-252
Step 2.2.2.6
Combine 5 and 33.
2⋅5323+5⋅33-252
Step 2.2.2.7
Simplify the expression.
Step 2.2.2.7.1
Combine the numerators over the common denominator.
2⋅532+5⋅33-252
Step 2.2.2.7.2
Multiply 5 by 3.
2⋅532+153-252
2⋅532+153-252
Step 2.2.2.8
To write 2⋅532+153 as a fraction with a common denominator, multiply by 22.
2⋅532+153⋅22-252
Step 2.2.2.9
To write -252 as a fraction with a common denominator, multiply by 33.
2⋅532+153⋅22-252⋅33
Step 2.2.2.10
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 2.2.2.10.1
Multiply 2⋅532+153 by 22.
(2⋅532+15)⋅23⋅2-252⋅33
Step 2.2.2.10.2
Multiply 3 by 2.
(2⋅532+15)⋅26-252⋅33
Step 2.2.2.10.3
Multiply 252 by 33.
(2⋅532+15)⋅26-25⋅32⋅3
Step 2.2.2.10.4
Multiply 2 by 3.
(2⋅532+15)⋅26-25⋅36
(2⋅532+15)⋅26-25⋅36
Step 2.2.2.11
Combine the numerators over the common denominator.
(2⋅532+15)⋅2-25⋅36
Step 2.2.2.12
Simplify the numerator.
Step 2.2.2.12.1
Apply the distributive property.
2⋅532⋅2+15⋅2-25⋅36
Step 2.2.2.12.2
Multiply 2 by 2.
4⋅532+15⋅2-25⋅36
Step 2.2.2.12.3
Multiply 15 by 2.
4⋅532+30-25⋅36
Step 2.2.2.12.4
Multiply -25 by 3.
4⋅532+30-756
Step 2.2.2.12.5
Subtract 75 from 30.
4⋅532-456
4⋅532-456
4⋅532-456
4⋅532-456
Step 2.3
List all of the points.
(0,5),(5,4⋅532-456)
(0,5),(5,4⋅532-456)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,5)
Absolute Minimum: (5,4⋅532-456)
Step 4
