Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=3x^4-x^6 , [-1,2]
f(x)=3x4-x6f(x)=3x4x6 , [-1,2][1,2]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of 3x4-x6 with respect to x is ddx[3x4]+ddx[-x6].
ddx[3x4]+ddx[-x6]
Step 1.1.1.2
Evaluate ddx[3x4].
Tap for more steps...
Step 1.1.1.2.1
Since 3 is constant with respect to x, the derivative of 3x4 with respect to x is 3ddx[x4].
3ddx[x4]+ddx[-x6]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
3(4x3)+ddx[-x6]
Step 1.1.1.2.3
Multiply 4 by 3.
12x3+ddx[-x6]
12x3+ddx[-x6]
Step 1.1.1.3
Evaluate ddx[-x6].
Tap for more steps...
Step 1.1.1.3.1
Since -1 is constant with respect to x, the derivative of -x6 with respect to x is -ddx[x6].
12x3-ddx[x6]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=6.
12x3-(6x5)
Step 1.1.1.3.3
Multiply 6 by -1.
12x3-6x5
12x3-6x5
Step 1.1.1.4
Reorder terms.
f(x)=-6x5+12x3
f(x)=-6x5+12x3
Step 1.1.2
The first derivative of f(x) with respect to x is -6x5+12x3.
-6x5+12x3
-6x5+12x3
Step 1.2
Set the first derivative equal to 0 then solve the equation -6x5+12x3=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
-6x5+12x3=0
Step 1.2.2
Factor -6x3 out of -6x5+12x3.
Tap for more steps...
Step 1.2.2.1
Factor -6x3 out of -6x5.
-6x3x2+12x3=0
Step 1.2.2.2
Factor -6x3 out of 12x3.
-6x3x2-6x3-2=0
Step 1.2.2.3
Factor -6x3 out of -6x3(x2)-6x3(-2).
-6x3(x2-2)=0
-6x3(x2-2)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x3=0
x2-2=0
Step 1.2.4
Set x3 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.4.1
Set x3 equal to 0.
x3=0
Step 1.2.4.2
Solve x3=0 for x.
Tap for more steps...
Step 1.2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=30
Step 1.2.4.2.2
Simplify 30.
Tap for more steps...
Step 1.2.4.2.2.1
Rewrite 0 as 03.
x=303
Step 1.2.4.2.2.2
Pull terms out from under the radical, assuming real numbers.
x=0
x=0
x=0
x=0
Step 1.2.5
Set x2-2 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.5.1
Set x2-2 equal to 0.
x2-2=0
Step 1.2.5.2
Solve x2-2=0 for x.
Tap for more steps...
Step 1.2.5.2.1
Add 2 to both sides of the equation.
x2=2
Step 1.2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±2
Step 1.2.5.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.5.2.3.1
First, use the positive value of the ± to find the first solution.
x=2
Step 1.2.5.2.3.2
Next, use the negative value of the ± to find the second solution.
x=-2
Step 1.2.5.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=2,-2
x=2,-2
x=2,-2
x=2,-2
Step 1.2.6
The final solution is all the values that make -6x3(x2-2)=0 true.
x=0,2,-2
x=0,2,-2
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 3x4-x6 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
3(0)4-(0)6
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
30-(0)6
Step 1.4.1.2.1.2
Multiply 3 by 0.
0-(0)6
Step 1.4.1.2.1.3
Raising 0 to any positive power yields 0.
0-0
Step 1.4.1.2.1.4
Multiply -1 by 0.
0+0
0+0
Step 1.4.1.2.2
Add 0 and 0.
0
0
0
Step 1.4.2
Evaluate at x=2.
Tap for more steps...
Step 1.4.2.1
Substitute 2 for x.
3(2)4-(2)6
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Rewrite 24 as 22.
Tap for more steps...
Step 1.4.2.2.1.1.1
Use nax=axn to rewrite 2 as 212.
3(212)4-(2)6
Step 1.4.2.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
32124-(2)6
Step 1.4.2.2.1.1.3
Combine 12 and 4.
3242-(2)6
Step 1.4.2.2.1.1.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 1.4.2.2.1.1.4.1
Factor 2 out of 4.
32222-(2)6
Step 1.4.2.2.1.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.1.4.2.1
Factor 2 out of 2.
32222(1)-(2)6
Step 1.4.2.2.1.1.4.2.2
Cancel the common factor.
322221-(2)6
Step 1.4.2.2.1.1.4.2.3
Rewrite the expression.
3221-(2)6
Step 1.4.2.2.1.1.4.2.4
Divide 2 by 1.
322-(2)6
322-(2)6
322-(2)6
322-(2)6
Step 1.4.2.2.1.2
Raise 2 to the power of 2.
34-(2)6
Step 1.4.2.2.1.3
Multiply 3 by 4.
12-(2)6
Step 1.4.2.2.1.4
Rewrite 26 as 23.
Tap for more steps...
Step 1.4.2.2.1.4.1
Use nax=axn to rewrite 2 as 212.
12-(212)6
Step 1.4.2.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
12-2126
Step 1.4.2.2.1.4.3
Combine 12 and 6.
12-262
Step 1.4.2.2.1.4.4
Cancel the common factor of 6 and 2.
Tap for more steps...
Step 1.4.2.2.1.4.4.1
Factor 2 out of 6.
12-2232
Step 1.4.2.2.1.4.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.4.4.2.1
Factor 2 out of 2.
12-2232(1)
Step 1.4.2.2.1.4.4.2.2
Cancel the common factor.
12-22321
Step 1.4.2.2.1.4.4.2.3
Rewrite the expression.
12-231
Step 1.4.2.2.1.4.4.2.4
Divide 3 by 1.
12-23
12-23
12-23
12-23
Step 1.4.2.2.1.5
Raise 2 to the power of 3.
12-18
Step 1.4.2.2.1.6
Multiply -1 by 8.
12-8
12-8
Step 1.4.2.2.2
Subtract 8 from 12.
4
4
4
Step 1.4.3
Evaluate at x=-2.
Tap for more steps...
Step 1.4.3.1
Substitute -2 for x.
3(-2)4-(-2)6
Step 1.4.3.2
Simplify.
Tap for more steps...
Step 1.4.3.2.1
Simplify each term.
Tap for more steps...
Step 1.4.3.2.1.1
Apply the product rule to -2.
3((-1)424)-(-2)6
Step 1.4.3.2.1.2
Raise -1 to the power of 4.
3(124)-(-2)6
Step 1.4.3.2.1.3
Multiply 24 by 1.
324-(-2)6
Step 1.4.3.2.1.4
Rewrite 24 as 22.
Tap for more steps...
Step 1.4.3.2.1.4.1
Use nax=axn to rewrite 2 as 212.
3(212)4-(-2)6
Step 1.4.3.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
32124-(-2)6
Step 1.4.3.2.1.4.3
Combine 12 and 4.
3242-(-2)6
Step 1.4.3.2.1.4.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 1.4.3.2.1.4.4.1
Factor 2 out of 4.
32222-(-2)6
Step 1.4.3.2.1.4.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.4.4.2.1
Factor 2 out of 2.
32222(1)-(-2)6
Step 1.4.3.2.1.4.4.2.2
Cancel the common factor.
322221-(-2)6
Step 1.4.3.2.1.4.4.2.3
Rewrite the expression.
3221-(-2)6
Step 1.4.3.2.1.4.4.2.4
Divide 2 by 1.
322-(-2)6
322-(-2)6
322-(-2)6
322-(-2)6
Step 1.4.3.2.1.5
Raise 2 to the power of 2.
34-(-2)6
Step 1.4.3.2.1.6
Multiply 3 by 4.
12-(-2)6
Step 1.4.3.2.1.7
Apply the product rule to -2.
12-((-1)626)
Step 1.4.3.2.1.8
Multiply -1 by (-1)6 by adding the exponents.
Tap for more steps...
Step 1.4.3.2.1.8.1
Move (-1)6.
12+(-1)6-126
Step 1.4.3.2.1.8.2
Multiply (-1)6 by -1.
Tap for more steps...
Step 1.4.3.2.1.8.2.1
Raise -1 to the power of 1.
12+(-1)6(-1)126
Step 1.4.3.2.1.8.2.2
Use the power rule aman=am+n to combine exponents.
12+(-1)6+126
12+(-1)6+126
Step 1.4.3.2.1.8.3
Add 6 and 1.
12+(-1)726
12+(-1)726
Step 1.4.3.2.1.9
Raise -1 to the power of 7.
12-26
Step 1.4.3.2.1.10
Rewrite 26 as 23.
Tap for more steps...
Step 1.4.3.2.1.10.1
Use nax=axn to rewrite 2 as 212.
12-(212)6
Step 1.4.3.2.1.10.2
Apply the power rule and multiply exponents, (am)n=amn.
12-2126
Step 1.4.3.2.1.10.3
Combine 12 and 6.
12-262
Step 1.4.3.2.1.10.4
Cancel the common factor of 6 and 2.
Tap for more steps...
Step 1.4.3.2.1.10.4.1
Factor 2 out of 6.
12-2232
Step 1.4.3.2.1.10.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.10.4.2.1
Factor 2 out of 2.
12-2232(1)
Step 1.4.3.2.1.10.4.2.2
Cancel the common factor.
12-22321
Step 1.4.3.2.1.10.4.2.3
Rewrite the expression.
12-231
Step 1.4.3.2.1.10.4.2.4
Divide 3 by 1.
12-23
12-23
12-23
12-23
Step 1.4.3.2.1.11
Raise 2 to the power of 3.
12-18
Step 1.4.3.2.1.12
Multiply -1 by 8.
12-8
12-8
Step 1.4.3.2.2
Subtract 8 from 12.
4
4
4
Step 1.4.4
List all of the points.
(0,0),(2,4),(-2,4)
(0,0),(2,4),(-2,4)
(0,0),(2,4),(-2,4)
Step 2
Exclude the points that are not on the interval.
(0,0),(2,4)
Step 3
Evaluate at the included endpoints.
Tap for more steps...
Step 3.1
Evaluate at x=-1.
Tap for more steps...
Step 3.1.1
Substitute -1 for x.
3(-1)4-(-1)6
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
Raise -1 to the power of 4.
31-(-1)6
Step 3.1.2.1.2
Multiply 3 by 1.
3-(-1)6
Step 3.1.2.1.3
Multiply -1 by (-1)6 by adding the exponents.
Tap for more steps...
Step 3.1.2.1.3.1
Multiply -1 by (-1)6.
Tap for more steps...
Step 3.1.2.1.3.1.1
Raise -1 to the power of 1.
3+(-1)1(-1)6
Step 3.1.2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
3+(-1)1+6
3+(-1)1+6
Step 3.1.2.1.3.2
Add 1 and 6.
3+(-1)7
3+(-1)7
Step 3.1.2.1.4
Raise -1 to the power of 7.
3-1
3-1
Step 3.1.2.2
Subtract 1 from 3.
2
2
2
Step 3.2
Evaluate at x=2.
Tap for more steps...
Step 3.2.1
Substitute 2 for x.
3(2)4-(2)6
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Raise 2 to the power of 4.
316-(2)6
Step 3.2.2.1.2
Multiply 3 by 16.
48-(2)6
Step 3.2.2.1.3
Raise 2 to the power of 6.
48-164
Step 3.2.2.1.4
Multiply -1 by 64.
48-64
48-64
Step 3.2.2.2
Subtract 64 from 48.
-16
-16
-16
Step 3.3
List all of the points.
(-1,2),(2,-16)
(-1,2),(2,-16)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (2,4)
Absolute Minimum: (2,-16)
Step 5
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]