Enter a problem...
Calculus Examples
f(x)=3x4-x6f(x)=3x4−x6 , [-1,2][−1,2]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 3x4-x6 with respect to x is ddx[3x4]+ddx[-x6].
ddx[3x4]+ddx[-x6]
Step 1.1.1.2
Evaluate ddx[3x4].
Step 1.1.1.2.1
Since 3 is constant with respect to x, the derivative of 3x4 with respect to x is 3ddx[x4].
3ddx[x4]+ddx[-x6]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
3(4x3)+ddx[-x6]
Step 1.1.1.2.3
Multiply 4 by 3.
12x3+ddx[-x6]
12x3+ddx[-x6]
Step 1.1.1.3
Evaluate ddx[-x6].
Step 1.1.1.3.1
Since -1 is constant with respect to x, the derivative of -x6 with respect to x is -ddx[x6].
12x3-ddx[x6]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=6.
12x3-(6x5)
Step 1.1.1.3.3
Multiply 6 by -1.
12x3-6x5
12x3-6x5
Step 1.1.1.4
Reorder terms.
f′(x)=-6x5+12x3
f′(x)=-6x5+12x3
Step 1.1.2
The first derivative of f(x) with respect to x is -6x5+12x3.
-6x5+12x3
-6x5+12x3
Step 1.2
Set the first derivative equal to 0 then solve the equation -6x5+12x3=0.
Step 1.2.1
Set the first derivative equal to 0.
-6x5+12x3=0
Step 1.2.2
Factor -6x3 out of -6x5+12x3.
Step 1.2.2.1
Factor -6x3 out of -6x5.
-6x3x2+12x3=0
Step 1.2.2.2
Factor -6x3 out of 12x3.
-6x3x2-6x3⋅-2=0
Step 1.2.2.3
Factor -6x3 out of -6x3(x2)-6x3(-2).
-6x3(x2-2)=0
-6x3(x2-2)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x3=0
x2-2=0
Step 1.2.4
Set x3 equal to 0 and solve for x.
Step 1.2.4.1
Set x3 equal to 0.
x3=0
Step 1.2.4.2
Solve x3=0 for x.
Step 1.2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=3√0
Step 1.2.4.2.2
Simplify 3√0.
Step 1.2.4.2.2.1
Rewrite 0 as 03.
x=3√03
Step 1.2.4.2.2.2
Pull terms out from under the radical, assuming real numbers.
x=0
x=0
x=0
x=0
Step 1.2.5
Set x2-2 equal to 0 and solve for x.
Step 1.2.5.1
Set x2-2 equal to 0.
x2-2=0
Step 1.2.5.2
Solve x2-2=0 for x.
Step 1.2.5.2.1
Add 2 to both sides of the equation.
x2=2
Step 1.2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√2
Step 1.2.5.2.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.5.2.3.1
First, use the positive value of the ± to find the first solution.
x=√2
Step 1.2.5.2.3.2
Next, use the negative value of the ± to find the second solution.
x=-√2
Step 1.2.5.2.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√2,-√2
x=√2,-√2
x=√2,-√2
x=√2,-√2
Step 1.2.6
The final solution is all the values that make -6x3(x2-2)=0 true.
x=0,√2,-√2
x=0,√2,-√2
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 3x4-x6 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
3(0)4-(0)6
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
3⋅0-(0)6
Step 1.4.1.2.1.2
Multiply 3 by 0.
0-(0)6
Step 1.4.1.2.1.3
Raising 0 to any positive power yields 0.
0-0
Step 1.4.1.2.1.4
Multiply -1 by 0.
0+0
0+0
Step 1.4.1.2.2
Add 0 and 0.
0
0
0
Step 1.4.2
Evaluate at x=√2.
Step 1.4.2.1
Substitute √2 for x.
3(√2)4-(√2)6
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Rewrite √24 as 22.
Step 1.4.2.2.1.1.1
Use n√ax=axn to rewrite √2 as 212.
3(212)4-(√2)6
Step 1.4.2.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
3⋅212⋅4-(√2)6
Step 1.4.2.2.1.1.3
Combine 12 and 4.
3⋅242-(√2)6
Step 1.4.2.2.1.1.4
Cancel the common factor of 4 and 2.
Step 1.4.2.2.1.1.4.1
Factor 2 out of 4.
3⋅22⋅22-(√2)6
Step 1.4.2.2.1.1.4.2
Cancel the common factors.
Step 1.4.2.2.1.1.4.2.1
Factor 2 out of 2.
3⋅22⋅22(1)-(√2)6
Step 1.4.2.2.1.1.4.2.2
Cancel the common factor.
3⋅22⋅22⋅1-(√2)6
Step 1.4.2.2.1.1.4.2.3
Rewrite the expression.
3⋅221-(√2)6
Step 1.4.2.2.1.1.4.2.4
Divide 2 by 1.
3⋅22-(√2)6
3⋅22-(√2)6
3⋅22-(√2)6
3⋅22-(√2)6
Step 1.4.2.2.1.2
Raise 2 to the power of 2.
3⋅4-(√2)6
Step 1.4.2.2.1.3
Multiply 3 by 4.
12-(√2)6
Step 1.4.2.2.1.4
Rewrite √26 as 23.
Step 1.4.2.2.1.4.1
Use n√ax=axn to rewrite √2 as 212.
12-(212)6
Step 1.4.2.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
12-212⋅6
Step 1.4.2.2.1.4.3
Combine 12 and 6.
12-262
Step 1.4.2.2.1.4.4
Cancel the common factor of 6 and 2.
Step 1.4.2.2.1.4.4.1
Factor 2 out of 6.
12-22⋅32
Step 1.4.2.2.1.4.4.2
Cancel the common factors.
Step 1.4.2.2.1.4.4.2.1
Factor 2 out of 2.
12-22⋅32(1)
Step 1.4.2.2.1.4.4.2.2
Cancel the common factor.
12-22⋅32⋅1
Step 1.4.2.2.1.4.4.2.3
Rewrite the expression.
12-231
Step 1.4.2.2.1.4.4.2.4
Divide 3 by 1.
12-23
12-23
12-23
12-23
Step 1.4.2.2.1.5
Raise 2 to the power of 3.
12-1⋅8
Step 1.4.2.2.1.6
Multiply -1 by 8.
12-8
12-8
Step 1.4.2.2.2
Subtract 8 from 12.
4
4
4
Step 1.4.3
Evaluate at x=-√2.
Step 1.4.3.1
Substitute -√2 for x.
3(-√2)4-(-√2)6
Step 1.4.3.2
Simplify.
Step 1.4.3.2.1
Simplify each term.
Step 1.4.3.2.1.1
Apply the product rule to -√2.
3((-1)4√24)-(-√2)6
Step 1.4.3.2.1.2
Raise -1 to the power of 4.
3(1√24)-(-√2)6
Step 1.4.3.2.1.3
Multiply √24 by 1.
3√24-(-√2)6
Step 1.4.3.2.1.4
Rewrite √24 as 22.
Step 1.4.3.2.1.4.1
Use n√ax=axn to rewrite √2 as 212.
3(212)4-(-√2)6
Step 1.4.3.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
3⋅212⋅4-(-√2)6
Step 1.4.3.2.1.4.3
Combine 12 and 4.
3⋅242-(-√2)6
Step 1.4.3.2.1.4.4
Cancel the common factor of 4 and 2.
Step 1.4.3.2.1.4.4.1
Factor 2 out of 4.
3⋅22⋅22-(-√2)6
Step 1.4.3.2.1.4.4.2
Cancel the common factors.
Step 1.4.3.2.1.4.4.2.1
Factor 2 out of 2.
3⋅22⋅22(1)-(-√2)6
Step 1.4.3.2.1.4.4.2.2
Cancel the common factor.
3⋅22⋅22⋅1-(-√2)6
Step 1.4.3.2.1.4.4.2.3
Rewrite the expression.
3⋅221-(-√2)6
Step 1.4.3.2.1.4.4.2.4
Divide 2 by 1.
3⋅22-(-√2)6
3⋅22-(-√2)6
3⋅22-(-√2)6
3⋅22-(-√2)6
Step 1.4.3.2.1.5
Raise 2 to the power of 2.
3⋅4-(-√2)6
Step 1.4.3.2.1.6
Multiply 3 by 4.
12-(-√2)6
Step 1.4.3.2.1.7
Apply the product rule to -√2.
12-((-1)6√26)
Step 1.4.3.2.1.8
Multiply -1 by (-1)6 by adding the exponents.
Step 1.4.3.2.1.8.1
Move (-1)6.
12+(-1)6⋅-1√26
Step 1.4.3.2.1.8.2
Multiply (-1)6 by -1.
Step 1.4.3.2.1.8.2.1
Raise -1 to the power of 1.
12+(-1)6⋅(-1)1√26
Step 1.4.3.2.1.8.2.2
Use the power rule aman=am+n to combine exponents.
12+(-1)6+1√26
12+(-1)6+1√26
Step 1.4.3.2.1.8.3
Add 6 and 1.
12+(-1)7√26
12+(-1)7√26
Step 1.4.3.2.1.9
Raise -1 to the power of 7.
12-√26
Step 1.4.3.2.1.10
Rewrite √26 as 23.
Step 1.4.3.2.1.10.1
Use n√ax=axn to rewrite √2 as 212.
12-(212)6
Step 1.4.3.2.1.10.2
Apply the power rule and multiply exponents, (am)n=amn.
12-212⋅6
Step 1.4.3.2.1.10.3
Combine 12 and 6.
12-262
Step 1.4.3.2.1.10.4
Cancel the common factor of 6 and 2.
Step 1.4.3.2.1.10.4.1
Factor 2 out of 6.
12-22⋅32
Step 1.4.3.2.1.10.4.2
Cancel the common factors.
Step 1.4.3.2.1.10.4.2.1
Factor 2 out of 2.
12-22⋅32(1)
Step 1.4.3.2.1.10.4.2.2
Cancel the common factor.
12-22⋅32⋅1
Step 1.4.3.2.1.10.4.2.3
Rewrite the expression.
12-231
Step 1.4.3.2.1.10.4.2.4
Divide 3 by 1.
12-23
12-23
12-23
12-23
Step 1.4.3.2.1.11
Raise 2 to the power of 3.
12-1⋅8
Step 1.4.3.2.1.12
Multiply -1 by 8.
12-8
12-8
Step 1.4.3.2.2
Subtract 8 from 12.
4
4
4
Step 1.4.4
List all of the points.
(0,0),(√2,4),(-√2,4)
(0,0),(√2,4),(-√2,4)
(0,0),(√2,4),(-√2,4)
Step 2
Exclude the points that are not on the interval.
(0,0),(√2,4)
Step 3
Step 3.1
Evaluate at x=-1.
Step 3.1.1
Substitute -1 for x.
3(-1)4-(-1)6
Step 3.1.2
Simplify.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Raise -1 to the power of 4.
3⋅1-(-1)6
Step 3.1.2.1.2
Multiply 3 by 1.
3-(-1)6
Step 3.1.2.1.3
Multiply -1 by (-1)6 by adding the exponents.
Step 3.1.2.1.3.1
Multiply -1 by (-1)6.
Step 3.1.2.1.3.1.1
Raise -1 to the power of 1.
3+(-1)1(-1)6
Step 3.1.2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
3+(-1)1+6
3+(-1)1+6
Step 3.1.2.1.3.2
Add 1 and 6.
3+(-1)7
3+(-1)7
Step 3.1.2.1.4
Raise -1 to the power of 7.
3-1
3-1
Step 3.1.2.2
Subtract 1 from 3.
2
2
2
Step 3.2
Evaluate at x=2.
Step 3.2.1
Substitute 2 for x.
3(2)4-(2)6
Step 3.2.2
Simplify.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Raise 2 to the power of 4.
3⋅16-(2)6
Step 3.2.2.1.2
Multiply 3 by 16.
48-(2)6
Step 3.2.2.1.3
Raise 2 to the power of 6.
48-1⋅64
Step 3.2.2.1.4
Multiply -1 by 64.
48-64
48-64
Step 3.2.2.2
Subtract 64 from 48.
-16
-16
-16
Step 3.3
List all of the points.
(-1,2),(2,-16)
(-1,2),(2,-16)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (√2,4)
Absolute Minimum: (2,-16)
Step 5
