Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x^(2/3) ; [-27,27]
f(x)=x23f(x)=x23 ; [-27,27][27,27]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=23n=23.
23x23-123x231
Step 1.1.1.2
To write -11 as a fraction with a common denominator, multiply by 3333.
23x23-13323x23133
Step 1.1.1.3
Combine -11 and 3333.
23x23+-13323x23+133
Step 1.1.1.4
Combine the numerators over the common denominator.
23x2-13323x2133
Step 1.1.1.5
Simplify the numerator.
Tap for more steps...
Step 1.1.1.5.1
Multiply -11 by 33.
23x2-3323x233
Step 1.1.1.5.2
Subtract 33 from 22.
23x-1323x13
23x-1323x13
Step 1.1.1.6
Move the negative in front of the fraction.
23x-1323x13
Step 1.1.1.7
Simplify.
Tap for more steps...
Step 1.1.1.7.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
231x13231x13
Step 1.1.1.7.2
Multiply 2323 by 1x131x13.
f(x)=23x13f'(x)=23x13
f(x)=23x13f'(x)=23x13
f(x)=23x13f'(x)=23x13
Step 1.1.2
The first derivative of f(x)f(x) with respect to xx is 23x1323x13.
23x1323x13
23x1323x13
Step 1.2
Set the first derivative equal to 00 then solve the equation 23x13=023x13=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 00.
23x13=023x13=0
Step 1.2.2
Set the numerator equal to zero.
2=02=0
Step 1.2.3
Since 2020, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 1.3.1.1
Apply the rule xmn=nxmxmn=nxm to rewrite the exponentiation as a radical.
233x1233x1
Step 1.3.1.2
Anything raised to 11 is the base itself.
233x233x
233x233x
Step 1.3.2
Set the denominator in 233x233x equal to 00 to find where the expression is undefined.
33x=033x=0
Step 1.3.3
Solve for xx.
Tap for more steps...
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33x)3=03(33x)3=03
Step 1.3.3.2
Simplify each side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Use nax=axnnax=axn to rewrite 3x3x as x13x13.
(3x13)3=03(3x13)3=03
Step 1.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify (3x13)3(3x13)3.
Tap for more steps...
Step 1.3.3.2.2.1.1
Apply the product rule to 3x133x13.
33(x13)3=0333(x13)3=03
Step 1.3.3.2.2.1.2
Raise 33 to the power of 33.
27(x13)3=0327(x13)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in (x13)3(x13)3.
Tap for more steps...
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
27x133=0327x133=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 33.
Tap for more steps...
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27x133=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27x1=03
27x1=03
27x1=03
Step 1.3.3.2.2.1.4
Simplify.
27x=03
27x=03
27x=03
Step 1.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27x=0
27x=0
27x=0
Step 1.3.3.3
Divide each term in 27x=0 by 27 and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in 27x=0 by 27.
27x27=027
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of 27.
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
27x27=027
Step 1.3.3.3.2.1.2
Divide x by 1.
x=027
x=027
x=027
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Divide 0 by 27.
x=0
x=0
x=0
x=0
x=0
Step 1.4
Evaluate x23 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
(0)23
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify the expression.
Tap for more steps...
Step 1.4.1.2.1.1
Rewrite 0 as 03.
(03)23
Step 1.4.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
03(23)
03(23)
Step 1.4.1.2.2
Cancel the common factor of 3.
Tap for more steps...
Step 1.4.1.2.2.1
Cancel the common factor.
03(23)
Step 1.4.1.2.2.2
Rewrite the expression.
02
02
Step 1.4.1.2.3
Raising 0 to any positive power yields 0.
0
0
0
Step 1.4.2
List all of the points.
(0,0)
(0,0)
(0,0)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=-27.
Tap for more steps...
Step 2.1.1
Substitute -27 for x.
(-27)23
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify the expression.
Tap for more steps...
Step 2.1.2.1.1
Rewrite -27 as (-3)3.
((-3)3)23
Step 2.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
(-3)3(23)
(-3)3(23)
Step 2.1.2.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.1.2.2.1
Cancel the common factor.
(-3)3(23)
Step 2.1.2.2.2
Rewrite the expression.
(-3)2
(-3)2
Step 2.1.2.3
Raise -3 to the power of 2.
9
9
9
Step 2.2
Evaluate at x=27.
Tap for more steps...
Step 2.2.1
Substitute 27 for x.
(27)23
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify the expression.
Tap for more steps...
Step 2.2.2.1.1
Rewrite 27 as 33.
(33)23
Step 2.2.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
33(23)
33(23)
Step 2.2.2.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.2.2.2.1
Cancel the common factor.
33(23)
Step 2.2.2.2.2
Rewrite the expression.
32
32
Step 2.2.2.3
Raise 3 to the power of 2.
9
9
9
Step 2.3
List all of the points.
(-27,9),(27,9)
(-27,9),(27,9)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (-27,9),(27,9)
Absolute Minimum: (0,0)
Step 4
image of graph
;
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]