Enter a problem...
Calculus Examples
f(x)=x23f(x)=x23 ; [-27,27][−27,27]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=23n=23.
23x23-123x23−1
Step 1.1.1.2
To write -1−1 as a fraction with a common denominator, multiply by 3333.
23x23-1⋅3323x23−1⋅33
Step 1.1.1.3
Combine -1−1 and 3333.
23x23+-1⋅3323x23+−1⋅33
Step 1.1.1.4
Combine the numerators over the common denominator.
23x2-1⋅3323x2−1⋅33
Step 1.1.1.5
Simplify the numerator.
Step 1.1.1.5.1
Multiply -1−1 by 33.
23x2-3323x2−33
Step 1.1.1.5.2
Subtract 33 from 22.
23x-1323x−13
23x-1323x−13
Step 1.1.1.6
Move the negative in front of the fraction.
23x-1323x−13
Step 1.1.1.7
Simplify.
Step 1.1.1.7.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
23⋅1x1323⋅1x13
Step 1.1.1.7.2
Multiply 2323 by 1x131x13.
f′(x)=23x13f'(x)=23x13
f′(x)=23x13f'(x)=23x13
f′(x)=23x13f'(x)=23x13
Step 1.1.2
The first derivative of f(x)f(x) with respect to xx is 23x1323x13.
23x1323x13
23x1323x13
Step 1.2
Set the first derivative equal to 00 then solve the equation 23x13=023x13=0.
Step 1.2.1
Set the first derivative equal to 00.
23x13=023x13=0
Step 1.2.2
Set the numerator equal to zero.
2=02=0
Step 1.2.3
Since 2≠02≠0, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule xmn=n√xmxmn=n√xm to rewrite the exponentiation as a radical.
233√x1233√x1
Step 1.3.1.2
Anything raised to 11 is the base itself.
233√x233√x
233√x233√x
Step 1.3.2
Set the denominator in 233√x233√x equal to 00 to find where the expression is undefined.
33√x=033√x=0
Step 1.3.3
Solve for xx.
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33√x)3=03(33√x)3=03
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axnn√ax=axn to rewrite 3√x3√x as x13x13.
(3x13)3=03(3x13)3=03
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (3x13)3(3x13)3.
Step 1.3.3.2.2.1.1
Apply the product rule to 3x133x13.
33(x13)3=0333(x13)3=03
Step 1.3.3.2.2.1.2
Raise 33 to the power of 33.
27(x13)3=0327(x13)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in (x13)3(x13)3.
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
27x13⋅3=0327x13⋅3=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 33.
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27x13⋅3=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27x1=03
27x1=03
27x1=03
Step 1.3.3.2.2.1.4
Simplify.
27x=03
27x=03
27x=03
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27x=0
27x=0
27x=0
Step 1.3.3.3
Divide each term in 27x=0 by 27 and simplify.
Step 1.3.3.3.1
Divide each term in 27x=0 by 27.
27x27=027
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of 27.
Step 1.3.3.3.2.1.1
Cancel the common factor.
27x27=027
Step 1.3.3.3.2.1.2
Divide x by 1.
x=027
x=027
x=027
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide 0 by 27.
x=0
x=0
x=0
x=0
x=0
Step 1.4
Evaluate x23 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
(0)23
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify the expression.
Step 1.4.1.2.1.1
Rewrite 0 as 03.
(03)23
Step 1.4.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
03(23)
03(23)
Step 1.4.1.2.2
Cancel the common factor of 3.
Step 1.4.1.2.2.1
Cancel the common factor.
03(23)
Step 1.4.1.2.2.2
Rewrite the expression.
02
02
Step 1.4.1.2.3
Raising 0 to any positive power yields 0.
0
0
0
Step 1.4.2
List all of the points.
(0,0)
(0,0)
(0,0)
Step 2
Step 2.1
Evaluate at x=-27.
Step 2.1.1
Substitute -27 for x.
(-27)23
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify the expression.
Step 2.1.2.1.1
Rewrite -27 as (-3)3.
((-3)3)23
Step 2.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
(-3)3(23)
(-3)3(23)
Step 2.1.2.2
Cancel the common factor of 3.
Step 2.1.2.2.1
Cancel the common factor.
(-3)3(23)
Step 2.1.2.2.2
Rewrite the expression.
(-3)2
(-3)2
Step 2.1.2.3
Raise -3 to the power of 2.
9
9
9
Step 2.2
Evaluate at x=27.
Step 2.2.1
Substitute 27 for x.
(27)23
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify the expression.
Step 2.2.2.1.1
Rewrite 27 as 33.
(33)23
Step 2.2.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
33(23)
33(23)
Step 2.2.2.2
Cancel the common factor of 3.
Step 2.2.2.2.1
Cancel the common factor.
33(23)
Step 2.2.2.2.2
Rewrite the expression.
32
32
Step 2.2.2.3
Raise 3 to the power of 2.
9
9
9
Step 2.3
List all of the points.
(-27,9),(27,9)
(-27,9),(27,9)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (-27,9),(27,9)
Absolute Minimum: (0,0)
Step 4
