Enter a problem...
Calculus Examples
g(t)=tt-8g(t)=tt−8 on 1010 , 1212
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the Quotient Rule which states that ddt[f(t)g(t)]ddt[f(t)g(t)] is g(t)ddt[f(t)]-f(t)ddt[g(t)]g(t)2g(t)ddt[f(t)]−f(t)ddt[g(t)]g(t)2 where f(t)=tf(t)=t and g(t)=t-8g(t)=t−8.
(t-8)ddt[t]-tddt[t-8](t-8)2(t−8)ddt[t]−tddt[t−8](t−8)2
Step 1.1.1.2
Differentiate.
Step 1.1.1.2.1
Differentiate using the Power Rule which states that ddt[tn]ddt[tn] is ntn-1ntn−1 where n=1n=1.
(t-8)⋅1-tddt[t-8](t-8)2(t−8)⋅1−tddt[t−8](t−8)2
Step 1.1.1.2.2
Multiply t-8t−8 by 11.
t-8-tddt[t-8](t-8)2t−8−tddt[t−8](t−8)2
Step 1.1.1.2.3
By the Sum Rule, the derivative of t-8t−8 with respect to tt is ddt[t]+ddt[-8]ddt[t]+ddt[−8].
t-8-t(ddt[t]+ddt[-8])(t-8)2t−8−t(ddt[t]+ddt[−8])(t−8)2
Step 1.1.1.2.4
Differentiate using the Power Rule which states that ddt[tn]ddt[tn] is ntn-1ntn−1 where n=1n=1.
t-8-t(1+ddt[-8])(t-8)2t−8−t(1+ddt[−8])(t−8)2
Step 1.1.1.2.5
Since -8−8 is constant with respect to tt, the derivative of -8−8 with respect to tt is 00.
t-8-t(1+0)(t-8)2t−8−t(1+0)(t−8)2
Step 1.1.1.2.6
Simplify by adding terms.
Step 1.1.1.2.6.1
Add 11 and 00.
t-8-t⋅1(t-8)2t−8−t⋅1(t−8)2
Step 1.1.1.2.6.2
Multiply -1−1 by 11.
t-8-t(t-8)2t−8−t(t−8)2
Step 1.1.1.2.6.3
Subtract tt from tt.
0-8(t-8)20−8(t−8)2
Step 1.1.1.2.6.4
Simplify the expression.
Step 1.1.1.2.6.4.1
Subtract 88 from 00.
-8(t-8)2−8(t−8)2
Step 1.1.1.2.6.4.2
Move the negative in front of the fraction.
f′(t)=-8(t-8)2f'(t)=−8(t−8)2
f′(t)=-8(t-8)2f'(t)=−8(t−8)2
f′(t)=-8(t-8)2f'(t)=−8(t−8)2
f′(t)=-8(t-8)2f'(t)=−8(t−8)2
f′(t)=-8(t-8)2f'(t)=−8(t−8)2
Step 1.1.2
The first derivative of g(t)g(t) with respect to tt is -8(t-8)2−8(t−8)2.
-8(t-8)2−8(t−8)2
-8(t-8)2−8(t−8)2
Step 1.2
Set the first derivative equal to 00 then solve the equation -8(t-8)2=0−8(t−8)2=0.
Step 1.2.1
Set the first derivative equal to 00.
-8(t-8)2=0−8(t−8)2=0
Step 1.2.2
Set the numerator equal to zero.
8=08=0
Step 1.2.3
Since 8≠08≠0, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Set the denominator in 8(t-8)28(t−8)2 equal to 00 to find where the expression is undefined.
(t-8)2=0(t−8)2=0
Step 1.3.2
Solve for tt.
Step 1.3.2.1
Set the t-8t−8 equal to 00.
t-8=0t−8=0
Step 1.3.2.2
Add 88 to both sides of the equation.
t=8t=8
t=8t=8
t=8t=8
Step 1.4
Evaluate tt-8tt−8 at each tt value where the derivative is 00 or undefined.
Step 1.4.1
Evaluate at t=8t=8.
Step 1.4.1.1
Substitute 88 for tt.
8(8)-88(8)−8
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Subtract 88 from 88.
8080
Step 1.4.1.2.2
The expression contains a division by 00. The expression is undefined.
Undefined
Undefined
Undefined
Undefined
Step 1.5
There are no values of tt in the domain of the original problem where the derivative is 00 or undefined.
No critical points found
No critical points found
Step 2
Step 2.1
Evaluate at t=10t=10.
Step 2.1.1
Substitute 1010 for tt.
10(10)-810(10)−8
Step 2.1.2
Simplify.
Step 2.1.2.1
Cancel the common factor of 1010 and (10)-8(10)−8.
Step 2.1.2.1.1
Factor 22 out of 1010.
2(5)(10)-82(5)(10)−8
Step 2.1.2.1.2
Cancel the common factors.
Step 2.1.2.1.2.1
Factor 22 out of 1010.
2⋅52⋅5-82⋅52⋅5−8
Step 2.1.2.1.2.2
Factor 22 out of -8−8.
2(5)2⋅5+2⋅-42(5)2⋅5+2⋅−4
Step 2.1.2.1.2.3
Factor 22 out of 2⋅5+2⋅-42⋅5+2⋅−4.
2(5)2⋅(5-4)2(5)2⋅(5−4)
Step 2.1.2.1.2.4
Cancel the common factor.
2⋅52⋅(5-4)
Step 2.1.2.1.2.5
Rewrite the expression.
55-4
55-4
55-4
Step 2.1.2.2
Simplify the expression.
Step 2.1.2.2.1
Subtract 4 from 5.
51
Step 2.1.2.2.2
Divide 5 by 1.
5
5
5
5
Step 2.2
Evaluate at t=12.
Step 2.2.1
Substitute 12 for t.
12(12)-8
Step 2.2.2
Simplify.
Step 2.2.2.1
Cancel the common factor of 12 and (12)-8.
Step 2.2.2.1.1
Factor 4 out of 12.
4(3)(12)-8
Step 2.2.2.1.2
Cancel the common factors.
Step 2.2.2.1.2.1
Factor 4 out of 12.
4⋅34⋅3-8
Step 2.2.2.1.2.2
Factor 4 out of -8.
4(3)4⋅3+4⋅-2
Step 2.2.2.1.2.3
Factor 4 out of 4⋅3+4⋅-2.
4(3)4⋅(3-2)
Step 2.2.2.1.2.4
Cancel the common factor.
4⋅34⋅(3-2)
Step 2.2.2.1.2.5
Rewrite the expression.
33-2
33-2
33-2
Step 2.2.2.2
Simplify the expression.
Step 2.2.2.2.1
Subtract 2 from 3.
31
Step 2.2.2.2.2
Divide 3 by 1.
3
3
3
3
Step 2.3
List all of the points.
(10,5),(12,3)
(10,5),(12,3)
Step 3
Compare the g(t) values found for each value of t in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(t) value and the minimum will occur at the lowest g(t) value.
Absolute Maximum: (10,5)
Absolute Minimum: (12,3)
Step 4