Calculus Examples

Find the Absolute Max and Min over the Interval g(t)=t/(t-8) on 10 , 12
g(t)=tt-8g(t)=tt8 on 1010 , 1212
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate using the Quotient Rule which states that ddt[f(t)g(t)]ddt[f(t)g(t)] is g(t)ddt[f(t)]-f(t)ddt[g(t)]g(t)2g(t)ddt[f(t)]f(t)ddt[g(t)]g(t)2 where f(t)=tf(t)=t and g(t)=t-8g(t)=t8.
(t-8)ddt[t]-tddt[t-8](t-8)2(t8)ddt[t]tddt[t8](t8)2
Step 1.1.1.2
Differentiate.
Tap for more steps...
Step 1.1.1.2.1
Differentiate using the Power Rule which states that ddt[tn]ddt[tn] is ntn-1ntn1 where n=1n=1.
(t-8)1-tddt[t-8](t-8)2(t8)1tddt[t8](t8)2
Step 1.1.1.2.2
Multiply t-8t8 by 11.
t-8-tddt[t-8](t-8)2t8tddt[t8](t8)2
Step 1.1.1.2.3
By the Sum Rule, the derivative of t-8t8 with respect to tt is ddt[t]+ddt[-8]ddt[t]+ddt[8].
t-8-t(ddt[t]+ddt[-8])(t-8)2t8t(ddt[t]+ddt[8])(t8)2
Step 1.1.1.2.4
Differentiate using the Power Rule which states that ddt[tn]ddt[tn] is ntn-1ntn1 where n=1n=1.
t-8-t(1+ddt[-8])(t-8)2t8t(1+ddt[8])(t8)2
Step 1.1.1.2.5
Since -88 is constant with respect to tt, the derivative of -88 with respect to tt is 00.
t-8-t(1+0)(t-8)2t8t(1+0)(t8)2
Step 1.1.1.2.6
Simplify by adding terms.
Tap for more steps...
Step 1.1.1.2.6.1
Add 11 and 00.
t-8-t1(t-8)2t8t1(t8)2
Step 1.1.1.2.6.2
Multiply -11 by 11.
t-8-t(t-8)2t8t(t8)2
Step 1.1.1.2.6.3
Subtract tt from tt.
0-8(t-8)208(t8)2
Step 1.1.1.2.6.4
Simplify the expression.
Tap for more steps...
Step 1.1.1.2.6.4.1
Subtract 88 from 00.
-8(t-8)28(t8)2
Step 1.1.1.2.6.4.2
Move the negative in front of the fraction.
f(t)=-8(t-8)2f'(t)=8(t8)2
f(t)=-8(t-8)2f'(t)=8(t8)2
f(t)=-8(t-8)2f'(t)=8(t8)2
f(t)=-8(t-8)2f'(t)=8(t8)2
f(t)=-8(t-8)2f'(t)=8(t8)2
Step 1.1.2
The first derivative of g(t)g(t) with respect to tt is -8(t-8)28(t8)2.
-8(t-8)28(t8)2
-8(t-8)28(t8)2
Step 1.2
Set the first derivative equal to 00 then solve the equation -8(t-8)2=08(t8)2=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 00.
-8(t-8)2=08(t8)2=0
Step 1.2.2
Set the numerator equal to zero.
8=08=0
Step 1.2.3
Since 8080, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Set the denominator in 8(t-8)28(t8)2 equal to 00 to find where the expression is undefined.
(t-8)2=0(t8)2=0
Step 1.3.2
Solve for tt.
Tap for more steps...
Step 1.3.2.1
Set the t-8t8 equal to 00.
t-8=0t8=0
Step 1.3.2.2
Add 88 to both sides of the equation.
t=8t=8
t=8t=8
t=8t=8
Step 1.4
Evaluate tt-8tt8 at each tt value where the derivative is 00 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at t=8t=8.
Tap for more steps...
Step 1.4.1.1
Substitute 88 for tt.
8(8)-88(8)8
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Subtract 88 from 88.
8080
Step 1.4.1.2.2
The expression contains a division by 00. The expression is undefined.
Undefined
Undefined
Undefined
Undefined
Step 1.5
There are no values of tt in the domain of the original problem where the derivative is 00 or undefined.
No critical points found
No critical points found
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at t=10t=10.
Tap for more steps...
Step 2.1.1
Substitute 1010 for tt.
10(10)-810(10)8
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Cancel the common factor of 1010 and (10)-8(10)8.
Tap for more steps...
Step 2.1.2.1.1
Factor 22 out of 1010.
2(5)(10)-82(5)(10)8
Step 2.1.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.1.2.1.2.1
Factor 22 out of 1010.
2525-825258
Step 2.1.2.1.2.2
Factor 22 out of -88.
2(5)25+2-42(5)25+24
Step 2.1.2.1.2.3
Factor 22 out of 25+2-425+24.
2(5)2(5-4)2(5)2(54)
Step 2.1.2.1.2.4
Cancel the common factor.
252(5-4)
Step 2.1.2.1.2.5
Rewrite the expression.
55-4
55-4
55-4
Step 2.1.2.2
Simplify the expression.
Tap for more steps...
Step 2.1.2.2.1
Subtract 4 from 5.
51
Step 2.1.2.2.2
Divide 5 by 1.
5
5
5
5
Step 2.2
Evaluate at t=12.
Tap for more steps...
Step 2.2.1
Substitute 12 for t.
12(12)-8
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of 12 and (12)-8.
Tap for more steps...
Step 2.2.2.1.1
Factor 4 out of 12.
4(3)(12)-8
Step 2.2.2.1.2
Cancel the common factors.
Tap for more steps...
Step 2.2.2.1.2.1
Factor 4 out of 12.
4343-8
Step 2.2.2.1.2.2
Factor 4 out of -8.
4(3)43+4-2
Step 2.2.2.1.2.3
Factor 4 out of 43+4-2.
4(3)4(3-2)
Step 2.2.2.1.2.4
Cancel the common factor.
434(3-2)
Step 2.2.2.1.2.5
Rewrite the expression.
33-2
33-2
33-2
Step 2.2.2.2
Simplify the expression.
Tap for more steps...
Step 2.2.2.2.1
Subtract 2 from 3.
31
Step 2.2.2.2.2
Divide 3 by 1.
3
3
3
3
Step 2.3
List all of the points.
(10,5),(12,3)
(10,5),(12,3)
Step 3
Compare the g(t) values found for each value of t in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(t) value and the minimum will occur at the lowest g(t) value.
Absolute Maximum: (10,5)
Absolute Minimum: (12,3)
Step 4
 [x2  12  π  xdx ]