Enter a problem...
Calculus Examples
f(x)=9x23-x on 0 , 729
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 9x23-x with respect to x is ddx[9x23]+ddx[-x].
ddx[9x23]+ddx[-x]
Step 1.1.1.2
Evaluate ddx[9x23].
Step 1.1.1.2.1
Since 9 is constant with respect to x, the derivative of 9x23 with respect to x is 9ddx[x23].
9ddx[x23]+ddx[-x]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=23.
9(23x23-1)+ddx[-x]
Step 1.1.1.2.3
To write -1 as a fraction with a common denominator, multiply by 33.
9(23x23-1⋅33)+ddx[-x]
Step 1.1.1.2.4
Combine -1 and 33.
9(23x23+-1⋅33)+ddx[-x]
Step 1.1.1.2.5
Combine the numerators over the common denominator.
9(23x2-1⋅33)+ddx[-x]
Step 1.1.1.2.6
Simplify the numerator.
Step 1.1.1.2.6.1
Multiply -1 by 3.
9(23x2-33)+ddx[-x]
Step 1.1.1.2.6.2
Subtract 3 from 2.
9(23x-13)+ddx[-x]
9(23x-13)+ddx[-x]
Step 1.1.1.2.7
Move the negative in front of the fraction.
9(23x-13)+ddx[-x]
Step 1.1.1.2.8
Combine 23 and x-13.
92x-133+ddx[-x]
Step 1.1.1.2.9
Combine 9 and 2x-133.
9(2x-13)3+ddx[-x]
Step 1.1.1.2.10
Multiply 2 by 9.
18x-133+ddx[-x]
Step 1.1.1.2.11
Move x-13 to the denominator using the negative exponent rule b-n=1bn.
183x13+ddx[-x]
Step 1.1.1.2.12
Factor 3 out of 18.
3⋅63x13+ddx[-x]
Step 1.1.1.2.13
Cancel the common factors.
Step 1.1.1.2.13.1
Factor 3 out of 3x13.
3⋅63(x13)+ddx[-x]
Step 1.1.1.2.13.2
Cancel the common factor.
3⋅63x13+ddx[-x]
Step 1.1.1.2.13.3
Rewrite the expression.
6x13+ddx[-x]
6x13+ddx[-x]
6x13+ddx[-x]
Step 1.1.1.3
Evaluate ddx[-x].
Step 1.1.1.3.1
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
6x13-ddx[x]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
6x13-1⋅1
Step 1.1.1.3.3
Multiply -1 by 1.
f′(x)=6x13-1
f′(x)=6x13-1
f′(x)=6x13-1
Step 1.1.2
The first derivative of f(x) with respect to x is 6x13-1.
6x13-1
6x13-1
Step 1.2
Set the first derivative equal to 0 then solve the equation 6x13-1=0.
Step 1.2.1
Set the first derivative equal to 0.
6x13-1=0
Step 1.2.2
Add 1 to both sides of the equation.
6x13=1
Step 1.2.3
Find the LCD of the terms in the equation.
Step 1.2.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
x13,1
Step 1.2.3.2
The LCM of one and any expression is the expression.
x13
x13
Step 1.2.4
Multiply each term in 6x13=1 by x13 to eliminate the fractions.
Step 1.2.4.1
Multiply each term in 6x13=1 by x13.
6x13x13=1x13
Step 1.2.4.2
Simplify the left side.
Step 1.2.4.2.1
Cancel the common factor of x13.
Step 1.2.4.2.1.1
Cancel the common factor.
6x13x13=1x13
Step 1.2.4.2.1.2
Rewrite the expression.
6=1x13
6=1x13
6=1x13
Step 1.2.4.3
Simplify the right side.
Step 1.2.4.3.1
Multiply x13 by 1.
6=x13
6=x13
6=x13
Step 1.2.5
Solve the equation.
Step 1.2.5.1
Rewrite the equation as x13=6.
x13=6
Step 1.2.5.2
Raise each side of the equation to the power of 3 to eliminate the fractional exponent on the left side.
(x13)3=63
Step 1.2.5.3
Simplify the exponent.
Step 1.2.5.3.1
Simplify the left side.
Step 1.2.5.3.1.1
Simplify (x13)3.
Step 1.2.5.3.1.1.1
Multiply the exponents in (x13)3.
Step 1.2.5.3.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x13⋅3=63
Step 1.2.5.3.1.1.1.2
Cancel the common factor of 3.
Step 1.2.5.3.1.1.1.2.1
Cancel the common factor.
x13⋅3=63
Step 1.2.5.3.1.1.1.2.2
Rewrite the expression.
x1=63
x1=63
x1=63
Step 1.2.5.3.1.1.2
Simplify.
x=63
x=63
x=63
Step 1.2.5.3.2
Simplify the right side.
Step 1.2.5.3.2.1
Raise 6 to the power of 3.
x=216
x=216
x=216
x=216
x=216
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
63√x1-1
Step 1.3.1.2
Anything raised to 1 is the base itself.
63√x-1
63√x-1
Step 1.3.2
Set the denominator in 63√x equal to 0 to find where the expression is undefined.
3√x=0
Step 1.3.3
Solve for x.
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
3√x3=03
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axn to rewrite 3√x as x13.
(x13)3=03
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (x13)3.
Step 1.3.3.2.2.1.1
Multiply the exponents in (x13)3.
Step 1.3.3.2.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x13⋅3=03
Step 1.3.3.2.2.1.1.2
Cancel the common factor of 3.
Step 1.3.3.2.2.1.1.2.1
Cancel the common factor.
x13⋅3=03
Step 1.3.3.2.2.1.1.2.2
Rewrite the expression.
x1=03
x1=03
x1=03
Step 1.3.3.2.2.1.2
Simplify.
x=03
x=03
x=03
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
x=0
x=0
x=0
x=0
x=0
Step 1.4
Evaluate 9x23-x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=216.
Step 1.4.1.1
Substitute 216 for x.
9(216)23-(216)
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Rewrite 216 as 63.
9(63)23-(216)
Step 1.4.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
9⋅63(23)-(216)
Step 1.4.1.2.1.3
Cancel the common factor of 3.
Step 1.4.1.2.1.3.1
Cancel the common factor.
9⋅63(23)-(216)
Step 1.4.1.2.1.3.2
Rewrite the expression.
9⋅62-(216)
9⋅62-(216)
Step 1.4.1.2.1.4
Raise 6 to the power of 2.
9⋅36-(216)
Step 1.4.1.2.1.5
Multiply 9 by 36.
324-(216)
Step 1.4.1.2.1.6
Multiply -1 by 216.
324-216
324-216
Step 1.4.1.2.2
Subtract 216 from 324.
108
108
108
Step 1.4.2
Evaluate at x=0.
Step 1.4.2.1
Substitute 0 for x.
9(0)23-(0)
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify the expression.
Step 1.4.2.2.1.1
Rewrite 0 as 03.
9(03)23-(0)
Step 1.4.2.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
9⋅03(23)-(0)
9⋅03(23)-(0)
Step 1.4.2.2.2
Cancel the common factor of 3.
Step 1.4.2.2.2.1
Cancel the common factor.
9⋅03(23)-(0)
Step 1.4.2.2.2.2
Rewrite the expression.
9⋅02-(0)
9⋅02-(0)
Step 1.4.2.2.3
Simplify the expression.
Step 1.4.2.2.3.1
Raising 0 to any positive power yields 0.
9⋅0-(0)
Step 1.4.2.2.3.2
Multiply 9 by 0.
0-(0)
Step 1.4.2.2.3.3
Subtract 0 from 0.
0
0
0
0
Step 1.4.3
List all of the points.
(216,108),(0,0)
(216,108),(0,0)
(216,108),(0,0)
Step 2
Step 2.1
Evaluate at x=0.
Step 2.1.1
Substitute 0 for x.
9(0)23-(0)
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify the expression.
Step 2.1.2.1.1
Rewrite 0 as 03.
9(03)23-(0)
Step 2.1.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
9⋅03(23)-(0)
9⋅03(23)-(0)
Step 2.1.2.2
Cancel the common factor of 3.
Step 2.1.2.2.1
Cancel the common factor.
9⋅03(23)-(0)
Step 2.1.2.2.2
Rewrite the expression.
9⋅02-(0)
9⋅02-(0)
Step 2.1.2.3
Simplify the expression.
Step 2.1.2.3.1
Raising 0 to any positive power yields 0.
9⋅0-(0)
Step 2.1.2.3.2
Multiply 9 by 0.
0-(0)
Step 2.1.2.3.3
Subtract 0 from 0.
0
0
0
0
Step 2.2
Evaluate at x=729.
Step 2.2.1
Substitute 729 for x.
9(729)23-(729)
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Rewrite 729 as 93.
9(93)23-(729)
Step 2.2.2.1.2
Apply the power rule and multiply exponents, (am)n=amn.
9⋅93(23)-(729)
Step 2.2.2.1.3
Cancel the common factor of 3.
Step 2.2.2.1.3.1
Cancel the common factor.
9⋅93(23)-(729)
Step 2.2.2.1.3.2
Rewrite the expression.
9⋅92-(729)
9⋅92-(729)
Step 2.2.2.1.4
Raise 9 to the power of 2.
9⋅81-(729)
Step 2.2.2.1.5
Multiply 9 by 81.
729-(729)
Step 2.2.2.1.6
Multiply -1 by 729.
729-729
729-729
Step 2.2.2.2
Subtract 729 from 729.
0
0
0
Step 2.3
List all of the points.
(0,0),(729,0)
(0,0),(729,0)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (216,108)
Absolute Minimum: (0,0),(729,0)
Step 4