Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=sin(x)^2 on [0,pi]
on
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.1.1.1
To apply the Chain Rule, set as .
Step 1.1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.1.3
Replace all occurrences of with .
Step 1.1.1.2
The derivative of with respect to is .
Step 1.1.1.3
Simplify.
Tap for more steps...
Step 1.1.1.3.1
Reorder the factors of .
Step 1.1.1.3.2
Reorder and .
Step 1.1.1.3.3
Reorder and .
Step 1.1.1.3.4
Apply the sine double-angle identity.
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
The exact value of is .
Step 1.2.4
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.4.1
Divide each term in by .
Step 1.2.4.2
Simplify the left side.
Tap for more steps...
Step 1.2.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.1.1
Cancel the common factor.
Step 1.2.4.2.1.2
Divide by .
Step 1.2.4.3
Simplify the right side.
Tap for more steps...
Step 1.2.4.3.1
Divide by .
Step 1.2.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 1.2.6
Solve for .
Tap for more steps...
Step 1.2.6.1
Simplify.
Tap for more steps...
Step 1.2.6.1.1
Multiply by .
Step 1.2.6.1.2
Add and .
Step 1.2.6.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.6.2.1
Divide each term in by .
Step 1.2.6.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.6.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.6.2.2.1.1
Cancel the common factor.
Step 1.2.6.2.2.1.2
Divide by .
Step 1.2.7
Find the period of .
Tap for more steps...
Step 1.2.7.1
The period of the function can be calculated using .
Step 1.2.7.2
Replace with in the formula for period.
Step 1.2.7.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.2.7.4
Cancel the common factor of .
Tap for more steps...
Step 1.2.7.4.1
Cancel the common factor.
Step 1.2.7.4.2
Divide by .
Step 1.2.8
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 1.2.9
Consolidate the answers.
, for any integer
, for any integer
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
The exact value of is .
Step 1.4.1.2.2
Raising to any positive power yields .
Step 1.4.2
Evaluate at .
Tap for more steps...
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
The exact value of is .
Step 1.4.2.2.2
One to any power is one.
Step 1.4.3
List all of the points.
, for any integer
, for any integer
, for any integer
Step 2
Exclude the points that are not on the interval.
Step 3
Use the first derivative test to determine which points can be maxima or minima.
Tap for more steps...
Step 3.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 3.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 3.2.1
Replace the variable with in the expression.
Step 3.2.2
Simplify the result.
Tap for more steps...
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Evaluate .
Step 3.2.2.3
The final answer is .
Step 3.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 3.3.1
Replace the variable with in the expression.
Step 3.3.2
Simplify the result.
Tap for more steps...
Step 3.3.2.1
Multiply by .
Step 3.3.2.2
Evaluate .
Step 3.3.2.3
The final answer is .
Step 3.4
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 3.4.1
Replace the variable with in the expression.
Step 3.4.2
Simplify the result.
Tap for more steps...
Step 3.4.2.1
Multiply by .
Step 3.4.2.2
Evaluate .
Step 3.4.2.3
The final answer is .
Step 3.5
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 3.5.1
Replace the variable with in the expression.
Step 3.5.2
Simplify the result.
Tap for more steps...
Step 3.5.2.1
Multiply by .
Step 3.5.2.2
Evaluate .
Step 3.5.2.3
The final answer is .
Step 3.6
Since the first derivative did not change signs around , this is not a local maximum or minimum.
Not a local maximum or minimum
Step 3.7
Since the first derivative changed signs from positive to negative around , then is a local maximum.
is a local maximum
Step 3.8
Since the first derivative did not change signs around , this is not a local maximum or minimum.
Not a local maximum or minimum
Step 3.9
These are the local extrema for .
is a local maximum
is a local maximum
Step 4
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
No absolute minimum
Step 5