Calculus Examples

Find the Absolute Max and Min over the Interval g(x) = cube root of x , [-8,8]
g(x)=3xg(x)=3x , [-8,8][8,8]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Use nax=axnnax=axn to rewrite 3x3x as x13x13.
ddx[x13]ddx[x13]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=13n=13.
13x13-113x131
Step 1.1.1.3
To write -11 as a fraction with a common denominator, multiply by 3333.
13x13-13313x13133
Step 1.1.1.4
Combine -11 and 3333.
13x13+-13313x13+133
Step 1.1.1.5
Combine the numerators over the common denominator.
13x1-13313x1133
Step 1.1.1.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.6.1
Multiply -11 by 33.
13x1-3313x133
Step 1.1.1.6.2
Subtract 33 from 11.
13x-2313x23
13x-2313x23
Step 1.1.1.7
Move the negative in front of the fraction.
13x-2313x23
Step 1.1.1.8
Simplify.
Tap for more steps...
Step 1.1.1.8.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
131x23131x23
Step 1.1.1.8.2
Multiply 1313 by 1x231x23.
f(x)=13x23f'(x)=13x23
f(x)=13x23f'(x)=13x23
f(x)=13x23f'(x)=13x23
Step 1.1.2
The first derivative of g(x)g(x) with respect to xx is 13x2313x23.
13x2313x23
13x2313x23
Step 1.2
Set the first derivative equal to 00 then solve the equation 13x23=013x23=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 00.
13x23=013x23=0
Step 1.2.2
Set the numerator equal to zero.
1=01=0
Step 1.2.3
Since 1010, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Apply the rule xmn=nxmxmn=nxm to rewrite the exponentiation as a radical.
133x2133x2
Step 1.3.2
Set the denominator in 133x2133x2 equal to 00 to find where the expression is undefined.
33x2=033x2=0
Step 1.3.3
Solve for xx.
Tap for more steps...
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33x2)3=03(33x2)3=03
Step 1.3.3.2
Simplify each side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Use nax=axnnax=axn to rewrite 3x23x2 as x23x23.
(3x23)3=03(3x23)3=03
Step 1.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify (3x23)3(3x23)3.
Tap for more steps...
Step 1.3.3.2.2.1.1
Apply the product rule to 3x233x23.
33(x23)3=0333(x23)3=03
Step 1.3.3.2.2.1.2
Raise 33 to the power of 33.
27(x23)3=0327(x23)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in (x23)3(x23)3.
Tap for more steps...
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
27x233=0327x233=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 33.
Tap for more steps...
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27x233=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27x2=03
27x2=03
27x2=03
27x2=03
27x2=03
Step 1.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27x2=0
27x2=0
27x2=0
Step 1.3.3.3
Solve for x.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in 27x2=0 by 27 and simplify.
Tap for more steps...
Step 1.3.3.3.1.1
Divide each term in 27x2=0 by 27.
27x227=027
Step 1.3.3.3.1.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.1.2.1
Cancel the common factor of 27.
Tap for more steps...
Step 1.3.3.3.1.2.1.1
Cancel the common factor.
27x227=027
Step 1.3.3.3.1.2.1.2
Divide x2 by 1.
x2=027
x2=027
x2=027
Step 1.3.3.3.1.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.1.3.1
Divide 0 by 27.
x2=0
x2=0
x2=0
Step 1.3.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±0
Step 1.3.3.3.3
Simplify ±0.
Tap for more steps...
Step 1.3.3.3.3.1
Rewrite 0 as 02.
x=±02
Step 1.3.3.3.3.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 1.3.3.3.3.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
x=0
Step 1.4
Evaluate 3x at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
30
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Remove parentheses.
30
Step 1.4.1.2.2
Rewrite 0 as 03.
303
Step 1.4.1.2.3
Pull terms out from under the radical, assuming real numbers.
0
0
0
Step 1.4.2
List all of the points.
(0,0)
(0,0)
(0,0)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=-8.
Tap for more steps...
Step 2.1.1
Substitute -8 for x.
3-8
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Remove parentheses.
3-8
Step 2.1.2.2
Rewrite -8 as (-2)3.
3(-2)3
Step 2.1.2.3
Pull terms out from under the radical, assuming real numbers.
-2
-2
-2
Step 2.2
Evaluate at x=8.
Tap for more steps...
Step 2.2.1
Substitute 8 for x.
38
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Remove parentheses.
38
Step 2.2.2.2
Rewrite 8 as 23.
323
Step 2.2.2.3
Pull terms out from under the radical, assuming real numbers.
2
2
2
Step 2.3
List all of the points.
(-8,-2),(8,2)
(-8,-2),(8,2)
Step 3
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (8,2)
Absolute Minimum: (-8,-2)
Step 4
image of graph
g(x)=3x,[-8,8]
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]