Enter a problem...
Calculus Examples
g(x)=3√xg(x)=3√x , [-8,8][−8,8]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Use n√ax=axnn√ax=axn to rewrite 3√x3√x as x13x13.
ddx[x13]ddx[x13]
Step 1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=13n=13.
13x13-113x13−1
Step 1.1.1.3
To write -1−1 as a fraction with a common denominator, multiply by 3333.
13x13-1⋅3313x13−1⋅33
Step 1.1.1.4
Combine -1−1 and 3333.
13x13+-1⋅3313x13+−1⋅33
Step 1.1.1.5
Combine the numerators over the common denominator.
13x1-1⋅3313x1−1⋅33
Step 1.1.1.6
Simplify the numerator.
Step 1.1.1.6.1
Multiply -1−1 by 33.
13x1-3313x1−33
Step 1.1.1.6.2
Subtract 33 from 11.
13x-2313x−23
13x-2313x−23
Step 1.1.1.7
Move the negative in front of the fraction.
13x-2313x−23
Step 1.1.1.8
Simplify.
Step 1.1.1.8.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
13⋅1x2313⋅1x23
Step 1.1.1.8.2
Multiply 1313 by 1x231x23.
f′(x)=13x23f'(x)=13x23
f′(x)=13x23f'(x)=13x23
f′(x)=13x23f'(x)=13x23
Step 1.1.2
The first derivative of g(x)g(x) with respect to xx is 13x2313x23.
13x2313x23
13x2313x23
Step 1.2
Set the first derivative equal to 00 then solve the equation 13x23=013x23=0.
Step 1.2.1
Set the first derivative equal to 00.
13x23=013x23=0
Step 1.2.2
Set the numerator equal to zero.
1=01=0
Step 1.2.3
Since 1≠01≠0, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Apply the rule xmn=n√xmxmn=n√xm to rewrite the exponentiation as a radical.
133√x2133√x2
Step 1.3.2
Set the denominator in 133√x2133√x2 equal to 00 to find where the expression is undefined.
33√x2=033√x2=0
Step 1.3.3
Solve for xx.
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33√x2)3=03(33√x2)3=03
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axnn√ax=axn to rewrite 3√x23√x2 as x23x23.
(3x23)3=03(3x23)3=03
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (3x23)3(3x23)3.
Step 1.3.3.2.2.1.1
Apply the product rule to 3x233x23.
33(x23)3=0333(x23)3=03
Step 1.3.3.2.2.1.2
Raise 33 to the power of 33.
27(x23)3=0327(x23)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in (x23)3(x23)3.
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
27x23⋅3=0327x23⋅3=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 33.
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27x23⋅3=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27x2=03
27x2=03
27x2=03
27x2=03
27x2=03
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27x2=0
27x2=0
27x2=0
Step 1.3.3.3
Solve for x.
Step 1.3.3.3.1
Divide each term in 27x2=0 by 27 and simplify.
Step 1.3.3.3.1.1
Divide each term in 27x2=0 by 27.
27x227=027
Step 1.3.3.3.1.2
Simplify the left side.
Step 1.3.3.3.1.2.1
Cancel the common factor of 27.
Step 1.3.3.3.1.2.1.1
Cancel the common factor.
27x227=027
Step 1.3.3.3.1.2.1.2
Divide x2 by 1.
x2=027
x2=027
x2=027
Step 1.3.3.3.1.3
Simplify the right side.
Step 1.3.3.3.1.3.1
Divide 0 by 27.
x2=0
x2=0
x2=0
Step 1.3.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√0
Step 1.3.3.3.3
Simplify ±√0.
Step 1.3.3.3.3.1
Rewrite 0 as 02.
x=±√02
Step 1.3.3.3.3.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 1.3.3.3.3.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
x=0
Step 1.4
Evaluate 3√x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
3√0
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Remove parentheses.
3√0
Step 1.4.1.2.2
Rewrite 0 as 03.
3√03
Step 1.4.1.2.3
Pull terms out from under the radical, assuming real numbers.
0
0
0
Step 1.4.2
List all of the points.
(0,0)
(0,0)
(0,0)
Step 2
Step 2.1
Evaluate at x=-8.
Step 2.1.1
Substitute -8 for x.
3√-8
Step 2.1.2
Simplify.
Step 2.1.2.1
Remove parentheses.
3√-8
Step 2.1.2.2
Rewrite -8 as (-2)3.
3√(-2)3
Step 2.1.2.3
Pull terms out from under the radical, assuming real numbers.
-2
-2
-2
Step 2.2
Evaluate at x=8.
Step 2.2.1
Substitute 8 for x.
3√8
Step 2.2.2
Simplify.
Step 2.2.2.1
Remove parentheses.
3√8
Step 2.2.2.2
Rewrite 8 as 23.
3√23
Step 2.2.2.3
Pull terms out from under the radical, assuming real numbers.
2
2
2
Step 2.3
List all of the points.
(-8,-2),(8,2)
(-8,-2),(8,2)
Step 3
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (8,2)
Absolute Minimum: (-8,-2)
Step 4
