Enter a problem...
Calculus Examples
f(x)=x3-x-1f(x)=x3−x−1 ; between 11 and 22
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate.
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-x-1x3−x−1 with respect to xx is ddx[x3]+ddx[-x]+ddx[-1]ddx[x3]+ddx[−x]+ddx[−1].
ddx[x3]+ddx[-x]+ddx[-1]ddx[x3]+ddx[−x]+ddx[−1]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2+ddx[-x]+ddx[-1]3x2+ddx[−x]+ddx[−1]
3x2+ddx[-x]+ddx[-1]3x2+ddx[−x]+ddx[−1]
Step 1.1.1.2
Evaluate ddx[-x]ddx[−x].
Step 1.1.1.2.1
Since -1−1 is constant with respect to xx, the derivative of -x−x with respect to xx is -ddx[x]−ddx[x].
3x2-ddx[x]+ddx[-1]3x2−ddx[x]+ddx[−1]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
3x2-1⋅1+ddx[-1]3x2−1⋅1+ddx[−1]
Step 1.1.1.2.3
Multiply -1−1 by 11.
3x2-1+ddx[-1]3x2−1+ddx[−1]
3x2-1+ddx[-1]3x2−1+ddx[−1]
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since -1−1 is constant with respect to xx, the derivative of -1−1 with respect to xx is 00.
3x2-1+03x2−1+0
Step 1.1.1.3.2
Add 3x2-13x2−1 and 00.
f′(x)=3x2-1
f′(x)=3x2-1
f′(x)=3x2-1
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-1.
3x2-1
3x2-1
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-1=0.
Step 1.2.1
Set the first derivative equal to 0.
3x2-1=0
Step 1.2.2
Add 1 to both sides of the equation.
3x2=1
Step 1.2.3
Divide each term in 3x2=1 by 3 and simplify.
Step 1.2.3.1
Divide each term in 3x2=1 by 3.
3x23=13
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Cancel the common factor of 3.
Step 1.2.3.2.1.1
Cancel the common factor.
3x23=13
Step 1.2.3.2.1.2
Divide x2 by 1.
x2=13
x2=13
x2=13
x2=13
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√13
Step 1.2.5
Simplify ±√13.
Step 1.2.5.1
Rewrite √13 as √1√3.
x=±√1√3
Step 1.2.5.2
Any root of 1 is 1.
x=±1√3
Step 1.2.5.3
Multiply 1√3 by √3√3.
x=±1√3⋅√3√3
Step 1.2.5.4
Combine and simplify the denominator.
Step 1.2.5.4.1
Multiply 1√3 by √3√3.
x=±√3√3√3
Step 1.2.5.4.2
Raise √3 to the power of 1.
x=±√3√31√3
Step 1.2.5.4.3
Raise √3 to the power of 1.
x=±√3√31√31
Step 1.2.5.4.4
Use the power rule aman=am+n to combine exponents.
x=±√3√31+1
Step 1.2.5.4.5
Add 1 and 1.
x=±√3√32
Step 1.2.5.4.6
Rewrite √32 as 3.
Step 1.2.5.4.6.1
Use n√ax=axn to rewrite √3 as 312.
x=±√3(312)2
Step 1.2.5.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±√3312⋅2
Step 1.2.5.4.6.3
Combine 12 and 2.
x=±√3322
Step 1.2.5.4.6.4
Cancel the common factor of 2.
Step 1.2.5.4.6.4.1
Cancel the common factor.
x=±√3322
Step 1.2.5.4.6.4.2
Rewrite the expression.
x=±√331
x=±√331
Step 1.2.5.4.6.5
Evaluate the exponent.
x=±√33
x=±√33
x=±√33
x=±√33
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.6.1
First, use the positive value of the ± to find the first solution.
x=√33
Step 1.2.6.2
Next, use the negative value of the ± to find the second solution.
x=-√33
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√33,-√33
x=√33,-√33
x=√33,-√33
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-x-1 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=√33.
Step 1.4.1.1
Substitute √33 for x.
(√33)3-(√33)-1
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Apply the product rule to √33.
√3333-(√33)-1
Step 1.4.1.2.1.2
Simplify the numerator.
Step 1.4.1.2.1.2.1
Rewrite √33 as √33.
√3333-(√33)-1
Step 1.4.1.2.1.2.2
Raise 3 to the power of 3.
√2733-(√33)-1
Step 1.4.1.2.1.2.3
Rewrite 27 as 32⋅3.
Step 1.4.1.2.1.2.3.1
Factor 9 out of 27.
√9(3)33-(√33)-1
Step 1.4.1.2.1.2.3.2
Rewrite 9 as 32.
√32⋅333-(√33)-1
√32⋅333-(√33)-1
Step 1.4.1.2.1.2.4
Pull terms out from under the radical.
3√333-(√33)-1
3√333-(√33)-1
Step 1.4.1.2.1.3
Raise 3 to the power of 3.
3√327-(√33)-1
Step 1.4.1.2.1.4
Cancel the common factor of 3 and 27.
Step 1.4.1.2.1.4.1
Factor 3 out of 3√3.
3(√3)27-(√33)-1
Step 1.4.1.2.1.4.2
Cancel the common factors.
Step 1.4.1.2.1.4.2.1
Factor 3 out of 27.
3√33⋅9-(√33)-1
Step 1.4.1.2.1.4.2.2
Cancel the common factor.
3√33⋅9-(√33)-1
Step 1.4.1.2.1.4.2.3
Rewrite the expression.
√39-(√33)-1
√39-(√33)-1
√39-√33-1
√39-√33-1
Step 1.4.1.2.2
To write -√33 as a fraction with a common denominator, multiply by 33.
√39-√33⋅33-1
Step 1.4.1.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Step 1.4.1.2.3.1
Multiply √33 by 33.
√39-√3⋅33⋅3-1
Step 1.4.1.2.3.2
Multiply 3 by 3.
√39-√3⋅39-1
√39-√3⋅39-1
Step 1.4.1.2.4
Combine the numerators over the common denominator.
√3-√3⋅39-1
Step 1.4.1.2.5
Simplify each term.
Step 1.4.1.2.5.1
Simplify the numerator.
Step 1.4.1.2.5.1.1
Multiply 3 by -1.
√3-3√39-1
Step 1.4.1.2.5.1.2
Subtract 3√3 from √3.
-2√39-1
-2√39-1
Step 1.4.1.2.5.2
Move the negative in front of the fraction.
-2√39-1
-2√39-1
-2√39-1
-2√39-1
Step 1.4.2
Evaluate at x=-√33.
Step 1.4.2.1
Substitute -√33 for x.
(-√33)3-(-√33)-1
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.4.2.2.1.1.1
Apply the product rule to -√33.
(-1)3(√33)3-(-√33)-1
Step 1.4.2.2.1.1.2
Apply the product rule to √33.
(-1)3√3333-(-√33)-1
(-1)3√3333-(-√33)-1
Step 1.4.2.2.1.2
Raise -1 to the power of 3.
-√3333-(-√33)-1
Step 1.4.2.2.1.3
Simplify the numerator.
Step 1.4.2.2.1.3.1
Rewrite √33 as √33.
-√3333-(-√33)-1
Step 1.4.2.2.1.3.2
Raise 3 to the power of 3.
-√2733-(-√33)-1
Step 1.4.2.2.1.3.3
Rewrite 27 as 32⋅3.
Step 1.4.2.2.1.3.3.1
Factor 9 out of 27.
-√9(3)33-(-√33)-1
Step 1.4.2.2.1.3.3.2
Rewrite 9 as 32.
-√32⋅333-(-√33)-1
-√32⋅333-(-√33)-1
Step 1.4.2.2.1.3.4
Pull terms out from under the radical.
-3√333-(-√33)-1
-3√333-(-√33)-1
Step 1.4.2.2.1.4
Raise 3 to the power of 3.
-3√327-(-√33)-1
Step 1.4.2.2.1.5
Cancel the common factor of 3 and 27.
Step 1.4.2.2.1.5.1
Factor 3 out of 3√3.
-3(√3)27-(-√33)-1
Step 1.4.2.2.1.5.2
Cancel the common factors.
Step 1.4.2.2.1.5.2.1
Factor 3 out of 27.
-3√33⋅9-(-√33)-1
Step 1.4.2.2.1.5.2.2
Cancel the common factor.
-3√33⋅9-(-√33)-1
Step 1.4.2.2.1.5.2.3
Rewrite the expression.
-√39-(-√33)-1
-√39-(-√33)-1
-√39-(-√33)-1
Step 1.4.2.2.1.6
Multiply -(-√33).
Step 1.4.2.2.1.6.1
Multiply -1 by -1.
-√39+1√33-1
Step 1.4.2.2.1.6.2
Multiply √33 by 1.
-√39+√33-1
-√39+√33-1
-√39+√33-1
Step 1.4.2.2.2
To write √33 as a fraction with a common denominator, multiply by 33.
-√39+√33⋅33-1
Step 1.4.2.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Step 1.4.2.2.3.1
Multiply √33 by 33.
-√39+√3⋅33⋅3-1
Step 1.4.2.2.3.2
Multiply 3 by 3.
-√39+√3⋅39-1
-√39+√3⋅39-1
Step 1.4.2.2.4
Simplify the expression.
Step 1.4.2.2.4.1
Combine the numerators over the common denominator.
-√3+√3⋅39-1
Step 1.4.2.2.4.2
Reorder the factors of √3⋅3.
-√3+3√39-1
-√3+3√39-1
Step 1.4.2.2.5
Add -√3 and 3√3.
2√39-1
2√39-1
2√39-1
Step 1.4.3
List all of the points.
(√33,-2√39-1),(-√33,2√39-1)
(√33,-2√39-1),(-√33,2√39-1)
(√33,-2√39-1),(-√33,2√39-1)
Step 2
Exclude the points that are not on the interval.
Step 3
Step 3.1
Evaluate at x=1.
Step 3.1.1
Substitute 1 for x.
(1)3-(1)-1
Step 3.1.2
Simplify.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
One to any power is one.
1-(1)-1
Step 3.1.2.1.2
Multiply -1 by 1.
1-1-1
1-1-1
Step 3.1.2.2
Simplify by subtracting numbers.
Step 3.1.2.2.1
Subtract 1 from 1.
0-1
Step 3.1.2.2.2
Subtract 1 from 0.
-1
-1
-1
-1
Step 3.2
Evaluate at x=2.
Step 3.2.1
Substitute 2 for x.
(2)3-(2)-1
Step 3.2.2
Simplify.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Raise 2 to the power of 3.
8-(2)-1
Step 3.2.2.1.2
Multiply -1 by 2.
8-2-1
8-2-1
Step 3.2.2.2
Simplify by subtracting numbers.
Step 3.2.2.2.1
Subtract 2 from 8.
6-1
Step 3.2.2.2.2
Subtract 1 from 6.
5
5
5
5
Step 3.3
List all of the points.
(1,-1),(2,5)
(1,-1),(2,5)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (2,5)
Absolute Minimum: (1,-1)
Step 5