Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x^3-x-1 ; between 1 and 2
f(x)=x3-x-1f(x)=x3x1 ; between 11 and 22
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-x-1x3x1 with respect to xx is ddx[x3]+ddx[-x]+ddx[-1]ddx[x3]+ddx[x]+ddx[1].
ddx[x3]+ddx[-x]+ddx[-1]ddx[x3]+ddx[x]+ddx[1]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
3x2+ddx[-x]+ddx[-1]3x2+ddx[x]+ddx[1]
3x2+ddx[-x]+ddx[-1]3x2+ddx[x]+ddx[1]
Step 1.1.1.2
Evaluate ddx[-x]ddx[x].
Tap for more steps...
Step 1.1.1.2.1
Since -11 is constant with respect to xx, the derivative of -xx with respect to xx is -ddx[x]ddx[x].
3x2-ddx[x]+ddx[-1]3x2ddx[x]+ddx[1]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
3x2-11+ddx[-1]3x211+ddx[1]
Step 1.1.1.2.3
Multiply -11 by 11.
3x2-1+ddx[-1]3x21+ddx[1]
3x2-1+ddx[-1]3x21+ddx[1]
Step 1.1.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.3.1
Since -11 is constant with respect to xx, the derivative of -11 with respect to xx is 00.
3x2-1+03x21+0
Step 1.1.1.3.2
Add 3x2-13x21 and 00.
f(x)=3x2-1
f(x)=3x2-1
f(x)=3x2-1
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-1.
3x2-1
3x2-1
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-1=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
3x2-1=0
Step 1.2.2
Add 1 to both sides of the equation.
3x2=1
Step 1.2.3
Divide each term in 3x2=1 by 3 and simplify.
Tap for more steps...
Step 1.2.3.1
Divide each term in 3x2=1 by 3.
3x23=13
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 1.2.3.2.1.1
Cancel the common factor.
3x23=13
Step 1.2.3.2.1.2
Divide x2 by 1.
x2=13
x2=13
x2=13
x2=13
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±13
Step 1.2.5
Simplify ±13.
Tap for more steps...
Step 1.2.5.1
Rewrite 13 as 13.
x=±13
Step 1.2.5.2
Any root of 1 is 1.
x=±13
Step 1.2.5.3
Multiply 13 by 33.
x=±1333
Step 1.2.5.4
Combine and simplify the denominator.
Tap for more steps...
Step 1.2.5.4.1
Multiply 13 by 33.
x=±333
Step 1.2.5.4.2
Raise 3 to the power of 1.
x=±3313
Step 1.2.5.4.3
Raise 3 to the power of 1.
x=±33131
Step 1.2.5.4.4
Use the power rule aman=am+n to combine exponents.
x=±331+1
Step 1.2.5.4.5
Add 1 and 1.
x=±332
Step 1.2.5.4.6
Rewrite 32 as 3.
Tap for more steps...
Step 1.2.5.4.6.1
Use nax=axn to rewrite 3 as 312.
x=±3(312)2
Step 1.2.5.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±33122
Step 1.2.5.4.6.3
Combine 12 and 2.
x=±3322
Step 1.2.5.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.5.4.6.4.1
Cancel the common factor.
x=±3322
Step 1.2.5.4.6.4.2
Rewrite the expression.
x=±331
x=±331
Step 1.2.5.4.6.5
Evaluate the exponent.
x=±33
x=±33
x=±33
x=±33
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.6.1
First, use the positive value of the ± to find the first solution.
x=33
Step 1.2.6.2
Next, use the negative value of the ± to find the second solution.
x=-33
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=33,-33
x=33,-33
x=33,-33
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-x-1 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=33.
Tap for more steps...
Step 1.4.1.1
Substitute 33 for x.
(33)3-(33)-1
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Apply the product rule to 33.
3333-(33)-1
Step 1.4.1.2.1.2
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.1.2.1
Rewrite 33 as 33.
3333-(33)-1
Step 1.4.1.2.1.2.2
Raise 3 to the power of 3.
2733-(33)-1
Step 1.4.1.2.1.2.3
Rewrite 27 as 323.
Tap for more steps...
Step 1.4.1.2.1.2.3.1
Factor 9 out of 27.
9(3)33-(33)-1
Step 1.4.1.2.1.2.3.2
Rewrite 9 as 32.
32333-(33)-1
32333-(33)-1
Step 1.4.1.2.1.2.4
Pull terms out from under the radical.
3333-(33)-1
3333-(33)-1
Step 1.4.1.2.1.3
Raise 3 to the power of 3.
3327-(33)-1
Step 1.4.1.2.1.4
Cancel the common factor of 3 and 27.
Tap for more steps...
Step 1.4.1.2.1.4.1
Factor 3 out of 33.
3(3)27-(33)-1
Step 1.4.1.2.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.1.2.1.4.2.1
Factor 3 out of 27.
3339-(33)-1
Step 1.4.1.2.1.4.2.2
Cancel the common factor.
3339-(33)-1
Step 1.4.1.2.1.4.2.3
Rewrite the expression.
39-(33)-1
39-(33)-1
39-33-1
39-33-1
Step 1.4.1.2.2
To write -33 as a fraction with a common denominator, multiply by 33.
39-3333-1
Step 1.4.1.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.4.1.2.3.1
Multiply 33 by 33.
39-3333-1
Step 1.4.1.2.3.2
Multiply 3 by 3.
39-339-1
39-339-1
Step 1.4.1.2.4
Combine the numerators over the common denominator.
3-339-1
Step 1.4.1.2.5
Simplify each term.
Tap for more steps...
Step 1.4.1.2.5.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.5.1.1
Multiply 3 by -1.
3-339-1
Step 1.4.1.2.5.1.2
Subtract 33 from 3.
-239-1
-239-1
Step 1.4.1.2.5.2
Move the negative in front of the fraction.
-239-1
-239-1
-239-1
-239-1
Step 1.4.2
Evaluate at x=-33.
Tap for more steps...
Step 1.4.2.1
Substitute -33 for x.
(-33)3-(-33)-1
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.4.2.2.1.1.1
Apply the product rule to -33.
(-1)3(33)3-(-33)-1
Step 1.4.2.2.1.1.2
Apply the product rule to 33.
(-1)33333-(-33)-1
(-1)33333-(-33)-1
Step 1.4.2.2.1.2
Raise -1 to the power of 3.
-3333-(-33)-1
Step 1.4.2.2.1.3
Simplify the numerator.
Tap for more steps...
Step 1.4.2.2.1.3.1
Rewrite 33 as 33.
-3333-(-33)-1
Step 1.4.2.2.1.3.2
Raise 3 to the power of 3.
-2733-(-33)-1
Step 1.4.2.2.1.3.3
Rewrite 27 as 323.
Tap for more steps...
Step 1.4.2.2.1.3.3.1
Factor 9 out of 27.
-9(3)33-(-33)-1
Step 1.4.2.2.1.3.3.2
Rewrite 9 as 32.
-32333-(-33)-1
-32333-(-33)-1
Step 1.4.2.2.1.3.4
Pull terms out from under the radical.
-3333-(-33)-1
-3333-(-33)-1
Step 1.4.2.2.1.4
Raise 3 to the power of 3.
-3327-(-33)-1
Step 1.4.2.2.1.5
Cancel the common factor of 3 and 27.
Tap for more steps...
Step 1.4.2.2.1.5.1
Factor 3 out of 33.
-3(3)27-(-33)-1
Step 1.4.2.2.1.5.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.5.2.1
Factor 3 out of 27.
-3339-(-33)-1
Step 1.4.2.2.1.5.2.2
Cancel the common factor.
-3339-(-33)-1
Step 1.4.2.2.1.5.2.3
Rewrite the expression.
-39-(-33)-1
-39-(-33)-1
-39-(-33)-1
Step 1.4.2.2.1.6
Multiply -(-33).
Tap for more steps...
Step 1.4.2.2.1.6.1
Multiply -1 by -1.
-39+133-1
Step 1.4.2.2.1.6.2
Multiply 33 by 1.
-39+33-1
-39+33-1
-39+33-1
Step 1.4.2.2.2
To write 33 as a fraction with a common denominator, multiply by 33.
-39+3333-1
Step 1.4.2.2.3
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.4.2.2.3.1
Multiply 33 by 33.
-39+3333-1
Step 1.4.2.2.3.2
Multiply 3 by 3.
-39+339-1
-39+339-1
Step 1.4.2.2.4
Simplify the expression.
Tap for more steps...
Step 1.4.2.2.4.1
Combine the numerators over the common denominator.
-3+339-1
Step 1.4.2.2.4.2
Reorder the factors of 33.
-3+339-1
-3+339-1
Step 1.4.2.2.5
Add -3 and 33.
239-1
239-1
239-1
Step 1.4.3
List all of the points.
(33,-239-1),(-33,239-1)
(33,-239-1),(-33,239-1)
(33,-239-1),(-33,239-1)
Step 2
Exclude the points that are not on the interval.
Step 3
Evaluate at the included endpoints.
Tap for more steps...
Step 3.1
Evaluate at x=1.
Tap for more steps...
Step 3.1.1
Substitute 1 for x.
(1)3-(1)-1
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
One to any power is one.
1-(1)-1
Step 3.1.2.1.2
Multiply -1 by 1.
1-1-1
1-1-1
Step 3.1.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 3.1.2.2.1
Subtract 1 from 1.
0-1
Step 3.1.2.2.2
Subtract 1 from 0.
-1
-1
-1
-1
Step 3.2
Evaluate at x=2.
Tap for more steps...
Step 3.2.1
Substitute 2 for x.
(2)3-(2)-1
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Raise 2 to the power of 3.
8-(2)-1
Step 3.2.2.1.2
Multiply -1 by 2.
8-2-1
8-2-1
Step 3.2.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 3.2.2.2.1
Subtract 2 from 8.
6-1
Step 3.2.2.2.2
Subtract 1 from 6.
5
5
5
5
Step 3.3
List all of the points.
(1,-1),(2,5)
(1,-1),(2,5)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (2,5)
Absolute Minimum: (1,-1)
Step 5
 [x2  12  π  xdx ]