Enter a problem...
Calculus Examples
f(x)=-x3+8x2-15xf(x)=−x3+8x2−15x
Step 1
Step 1.1
By the Sum Rule, the derivative of -x3+8x2-15x−x3+8x2−15x with respect to xx is ddx[-x3]+ddx[8x2]+ddx[-15x]ddx[−x3]+ddx[8x2]+ddx[−15x].
ddx[-x3]+ddx[8x2]+ddx[-15x]ddx[−x3]+ddx[8x2]+ddx[−15x]
Step 1.2
Evaluate ddx[-x3]ddx[−x3].
Step 1.2.1
Since -1−1 is constant with respect to xx, the derivative of -x3−x3 with respect to xx is -ddx[x3]−ddx[x3].
-ddx[x3]+ddx[8x2]+ddx[-15x]−ddx[x3]+ddx[8x2]+ddx[−15x]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
-(3x2)+ddx[8x2]+ddx[-15x]−(3x2)+ddx[8x2]+ddx[−15x]
Step 1.2.3
Multiply 33 by -1−1.
-3x2+ddx[8x2]+ddx[-15x]−3x2+ddx[8x2]+ddx[−15x]
-3x2+ddx[8x2]+ddx[-15x]−3x2+ddx[8x2]+ddx[−15x]
Step 1.3
Evaluate ddx[8x2]ddx[8x2].
Step 1.3.1
Since 88 is constant with respect to xx, the derivative of 8x28x2 with respect to xx is 8ddx[x2]8ddx[x2].
-3x2+8ddx[x2]+ddx[-15x]−3x2+8ddx[x2]+ddx[−15x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
-3x2+8(2x)+ddx[-15x]−3x2+8(2x)+ddx[−15x]
Step 1.3.3
Multiply 22 by 88.
-3x2+16x+ddx[-15x]−3x2+16x+ddx[−15x]
-3x2+16x+ddx[-15x]−3x2+16x+ddx[−15x]
Step 1.4
Evaluate ddx[-15x]ddx[−15x].
Step 1.4.1
Since -15−15 is constant with respect to xx, the derivative of -15x−15x with respect to xx is -15ddx[x]−15ddx[x].
-3x2+16x-15ddx[x]−3x2+16x−15ddx[x]
Step 1.4.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
-3x2+16x-15⋅1−3x2+16x−15⋅1
Step 1.4.3
Multiply -15−15 by 11.
-3x2+16x-15−3x2+16x−15
-3x2+16x-15−3x2+16x−15
-3x2+16x-15−3x2+16x−15
Step 2
Step 2.1
By the Sum Rule, the derivative of -3x2+16x-15−3x2+16x−15 with respect to xx is ddx[-3x2]+ddx[16x]+ddx[-15]ddx[−3x2]+ddx[16x]+ddx[−15].
f′′(x)=ddx(-3x2)+ddx(16x)+ddx(-15)
Step 2.2
Evaluate ddx[-3x2].
Step 2.2.1
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
f′′(x)=-3ddxx2+ddx(16x)+ddx(-15)
Step 2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=-3(2x)+ddx(16x)+ddx(-15)
Step 2.2.3
Multiply 2 by -3.
f′′(x)=-6x+ddx(16x)+ddx(-15)
f′′(x)=-6x+ddx(16x)+ddx(-15)
Step 2.3
Evaluate ddx[16x].
Step 2.3.1
Since 16 is constant with respect to x, the derivative of 16x with respect to x is 16ddx[x].
f′′(x)=-6x+16ddx(x)+ddx(-15)
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=-6x+16⋅1+ddx(-15)
Step 2.3.3
Multiply 16 by 1.
f′′(x)=-6x+16+ddx(-15)
f′′(x)=-6x+16+ddx(-15)
Step 2.4
Differentiate using the Constant Rule.
Step 2.4.1
Since -15 is constant with respect to x, the derivative of -15 with respect to x is 0.
f′′(x)=-6x+16+0
Step 2.4.2
Add -6x+16 and 0.
f′′(x)=-6x+16
f′′(x)=-6x+16
f′′(x)=-6x+16
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
-3x2+16x-15=0
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
By the Sum Rule, the derivative of -x3+8x2-15x with respect to x is ddx[-x3]+ddx[8x2]+ddx[-15x].
ddx[-x3]+ddx[8x2]+ddx[-15x]
Step 4.1.2
Evaluate ddx[-x3].
Step 4.1.2.1
Since -1 is constant with respect to x, the derivative of -x3 with respect to x is -ddx[x3].
-ddx[x3]+ddx[8x2]+ddx[-15x]
Step 4.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
-(3x2)+ddx[8x2]+ddx[-15x]
Step 4.1.2.3
Multiply 3 by -1.
-3x2+ddx[8x2]+ddx[-15x]
-3x2+ddx[8x2]+ddx[-15x]
Step 4.1.3
Evaluate ddx[8x2].
Step 4.1.3.1
Since 8 is constant with respect to x, the derivative of 8x2 with respect to x is 8ddx[x2].
-3x2+8ddx[x2]+ddx[-15x]
Step 4.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
-3x2+8(2x)+ddx[-15x]
Step 4.1.3.3
Multiply 2 by 8.
-3x2+16x+ddx[-15x]
-3x2+16x+ddx[-15x]
Step 4.1.4
Evaluate ddx[-15x].
Step 4.1.4.1
Since -15 is constant with respect to x, the derivative of -15x with respect to x is -15ddx[x].
-3x2+16x-15ddx[x]
Step 4.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-3x2+16x-15⋅1
Step 4.1.4.3
Multiply -15 by 1.
f′(x)=-3x2+16x-15
f′(x)=-3x2+16x-15
f′(x)=-3x2+16x-15
Step 4.2
The first derivative of f(x) with respect to x is -3x2+16x-15.
-3x2+16x-15
-3x2+16x-15
Step 5
Step 5.1
Set the first derivative equal to 0.
-3x2+16x-15=0
Step 5.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.3
Substitute the values a=-3, b=16, and c=-15 into the quadratic formula and solve for x.
-16±√162-4⋅(-3⋅-15)2⋅-3
Step 5.4
Simplify.
Step 5.4.1
Simplify the numerator.
Step 5.4.1.1
Raise 16 to the power of 2.
x=-16±√256-4⋅-3⋅-152⋅-3
Step 5.4.1.2
Multiply -4⋅-3⋅-15.
Step 5.4.1.2.1
Multiply -4 by -3.
x=-16±√256+12⋅-152⋅-3
Step 5.4.1.2.2
Multiply 12 by -15.
x=-16±√256-1802⋅-3
x=-16±√256-1802⋅-3
Step 5.4.1.3
Subtract 180 from 256.
x=-16±√762⋅-3
Step 5.4.1.4
Rewrite 76 as 22⋅19.
Step 5.4.1.4.1
Factor 4 out of 76.
x=-16±√4(19)2⋅-3
Step 5.4.1.4.2
Rewrite 4 as 22.
x=-16±√22⋅192⋅-3
x=-16±√22⋅192⋅-3
Step 5.4.1.5
Pull terms out from under the radical.
x=-16±2√192⋅-3
x=-16±2√192⋅-3
Step 5.4.2
Multiply 2 by -3.
x=-16±2√19-6
Step 5.4.3
Simplify -16±2√19-6.
x=8±√193
x=8±√193
Step 5.5
Simplify the expression to solve for the + portion of the ±.
Step 5.5.1
Simplify the numerator.
Step 5.5.1.1
Raise 16 to the power of 2.
x=-16±√256-4⋅-3⋅-152⋅-3
Step 5.5.1.2
Multiply -4⋅-3⋅-15.
Step 5.5.1.2.1
Multiply -4 by -3.
x=-16±√256+12⋅-152⋅-3
Step 5.5.1.2.2
Multiply 12 by -15.
x=-16±√256-1802⋅-3
x=-16±√256-1802⋅-3
Step 5.5.1.3
Subtract 180 from 256.
x=-16±√762⋅-3
Step 5.5.1.4
Rewrite 76 as 22⋅19.
Step 5.5.1.4.1
Factor 4 out of 76.
x=-16±√4(19)2⋅-3
Step 5.5.1.4.2
Rewrite 4 as 22.
x=-16±√22⋅192⋅-3
x=-16±√22⋅192⋅-3
Step 5.5.1.5
Pull terms out from under the radical.
x=-16±2√192⋅-3
x=-16±2√192⋅-3
Step 5.5.2
Multiply 2 by -3.
x=-16±2√19-6
Step 5.5.3
Simplify -16±2√19-6.
x=8±√193
Step 5.5.4
Change the ± to +.
x=8+√193
x=8+√193
Step 5.6
Simplify the expression to solve for the - portion of the ±.
Step 5.6.1
Simplify the numerator.
Step 5.6.1.1
Raise 16 to the power of 2.
x=-16±√256-4⋅-3⋅-152⋅-3
Step 5.6.1.2
Multiply -4⋅-3⋅-15.
Step 5.6.1.2.1
Multiply -4 by -3.
x=-16±√256+12⋅-152⋅-3
Step 5.6.1.2.2
Multiply 12 by -15.
x=-16±√256-1802⋅-3
x=-16±√256-1802⋅-3
Step 5.6.1.3
Subtract 180 from 256.
x=-16±√762⋅-3
Step 5.6.1.4
Rewrite 76 as 22⋅19.
Step 5.6.1.4.1
Factor 4 out of 76.
x=-16±√4(19)2⋅-3
Step 5.6.1.4.2
Rewrite 4 as 22.
x=-16±√22⋅192⋅-3
x=-16±√22⋅192⋅-3
Step 5.6.1.5
Pull terms out from under the radical.
x=-16±2√192⋅-3
x=-16±2√192⋅-3
Step 5.6.2
Multiply 2 by -3.
x=-16±2√19-6
Step 5.6.3
Simplify -16±2√19-6.
x=8±√193
Step 5.6.4
Change the ± to -.
x=8-√193
x=8-√193
Step 5.7
The final answer is the combination of both solutions.
x=8+√193,8-√193
x=8+√193,8-√193
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
x=8+√193,8-√193
Step 8
Evaluate the second derivative at x=8+√193. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
-68+√193+16
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Cancel the common factor of 3.
Step 9.1.1.1
Factor 3 out of -6.
3(-2)8+√193+16
Step 9.1.1.2
Cancel the common factor.
3⋅-28+√193+16
Step 9.1.1.3
Rewrite the expression.
-2(8+√19)+16
-2(8+√19)+16
Step 9.1.2
Apply the distributive property.
-2⋅8-2√19+16
Step 9.1.3
Multiply -2 by 8.
-16-2√19+16
-16-2√19+16
Step 9.2
Simplify by adding numbers.
Step 9.2.1
Add -16 and 16.
0-2√19
Step 9.2.2
Subtract 2√19 from 0.
-2√19
-2√19
-2√19
Step 10
x=8+√193 is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
x=8+√193 is a local maximum
Step 11
Step 11.1
Replace the variable x with 8+√193 in the expression.
f(8+√193)=-(8+√193)3+8(8+√193)2-158+√193
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Apply the product rule to 8+√193.
f(8+√193)=-(8+√19)333+8(8+√193)2-158+√193
Step 11.2.1.2
Raise 3 to the power of 3.
f(8+√193)=-(8+√19)327+8(8+√193)2-158+√193
Step 11.2.1.3
Use the Binomial Theorem.
f(8+√193)=-83+3⋅(82√19)+3⋅(8√192)+√19327+8(8+√193)2-158+√193
Step 11.2.1.4
Simplify each term.
Step 11.2.1.4.1
Raise 8 to the power of 3.
f(8+√193)=-512+3⋅(82√19)+3⋅(8√192)+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.2
Raise 8 to the power of 2.
f(8+√193)=-512+3⋅(64√19)+3⋅(8√192)+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.3
Multiply 3 by 64.
f(8+√193)=-512+192√19+3⋅(8√192)+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.4
Multiply 3 by 8.
f(8+√193)=-512+192√19+24√192+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5
Rewrite √192 as 19.
Step 11.2.1.4.5.1
Use n√ax=axn to rewrite √19 as 1912.
f(8+√193)=-512+192√19+24(1912)2+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8+√193)=-512+192√19+24⋅1912⋅2+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5.3
Combine 12 and 2.
f(8+√193)=-512+192√19+24⋅1922+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5.4
Cancel the common factor of 2.
Step 11.2.1.4.5.4.1
Cancel the common factor.
f(8+√193)=-512+192√19+24⋅1922+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5.4.2
Rewrite the expression.
f(8+√193)=-512+192√19+24⋅19+√19327+8(8+√193)2-158+√193
f(8+√193)=-512+192√19+24⋅19+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.5.5
Evaluate the exponent.
f(8+√193)=-512+192√19+24⋅19+√19327+8(8+√193)2-158+√193
f(8+√193)=-512+192√19+24⋅19+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.6
Multiply 24 by 19.
f(8+√193)=-512+192√19+456+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.7
Rewrite √193 as √193.
f(8+√193)=-512+192√19+456+√19327+8(8+√193)2-158+√193
Step 11.2.1.4.8
Raise 19 to the power of 3.
f(8+√193)=-512+192√19+456+√685927+8(8+√193)2-158+√193
Step 11.2.1.4.9
Rewrite 6859 as 192⋅19.
Step 11.2.1.4.9.1
Factor 361 out of 6859.
f(8+√193)=-512+192√19+456+√361(19)27+8(8+√193)2-158+√193
Step 11.2.1.4.9.2
Rewrite 361 as 192.
f(8+√193)=-512+192√19+456+√192⋅1927+8(8+√193)2-158+√193
f(8+√193)=-512+192√19+456+√192⋅1927+8(8+√193)2-158+√193
Step 11.2.1.4.10
Pull terms out from under the radical.
f(8+√193)=-512+192√19+456+19√1927+8(8+√193)2-158+√193
f(8+√193)=-512+192√19+456+19√1927+8(8+√193)2-158+√193
Step 11.2.1.5
Add 512 and 456.
f(8+√193)=-968+192√19+19√1927+8(8+√193)2-158+√193
Step 11.2.1.6
Add 192√19 and 19√19.
f(8+√193)=-968+211√1927+8(8+√193)2-158+√193
Step 11.2.1.7
Apply the product rule to 8+√193.
f(8+√193)=-968+211√1927+8((8+√19)232)-158+√193
Step 11.2.1.8
Raise 3 to the power of 2.
f(8+√193)=-968+211√1927+8((8+√19)29)-158+√193
Step 11.2.1.9
Rewrite (8+√19)2 as (8+√19)(8+√19).
f(8+√193)=-968+211√1927+8((8+√19)(8+√19)9)-158+√193
Step 11.2.1.10
Expand (8+√19)(8+√19) using the FOIL Method.
Step 11.2.1.10.1
Apply the distributive property.
f(8+√193)=-968+211√1927+8(8(8+√19)+√19(8+√19)9)-158+√193
Step 11.2.1.10.2
Apply the distributive property.
f(8+√193)=-968+211√1927+8(8⋅8+8√19+√19(8+√19)9)-158+√193
Step 11.2.1.10.3
Apply the distributive property.
f(8+√193)=-968+211√1927+8(8⋅8+8√19+√19⋅8+√19√199)-158+√193
f(8+√193)=-968+211√1927+8(8⋅8+8√19+√19⋅8+√19√199)-158+√193
Step 11.2.1.11
Simplify and combine like terms.
Step 11.2.1.11.1
Simplify each term.
Step 11.2.1.11.1.1
Multiply 8 by 8.
f(8+√193)=-968+211√1927+8(64+8√19+√19⋅8+√19√199)-158+√193
Step 11.2.1.11.1.2
Move 8 to the left of √19.
f(8+√193)=-968+211√1927+8(64+8√19+8⋅√19+√19√199)-158+√193
Step 11.2.1.11.1.3
Combine using the product rule for radicals.
f(8+√193)=-968+211√1927+8(64+8√19+8√19+√19⋅199)-158+√193
Step 11.2.1.11.1.4
Multiply 19 by 19.
f(8+√193)=-968+211√1927+8(64+8√19+8√19+√3619)-158+√193
Step 11.2.1.11.1.5
Rewrite 361 as 192.
f(8+√193)=-968+211√1927+8(64+8√19+8√19+√1929)-158+√193
Step 11.2.1.11.1.6
Pull terms out from under the radical, assuming positive real numbers.
f(8+√193)=-968+211√1927+8(64+8√19+8√19+199)-158+√193
f(8+√193)=-968+211√1927+8(64+8√19+8√19+199)-158+√193
Step 11.2.1.11.2
Add 64 and 19.
f(8+√193)=-968+211√1927+8(83+8√19+8√199)-158+√193
Step 11.2.1.11.3
Add 8√19 and 8√19.
f(8+√193)=-968+211√1927+8(83+16√199)-158+√193
f(8+√193)=-968+211√1927+8(83+16√199)-158+√193
Step 11.2.1.12
Combine 8 and 83+16√199.
f(8+√193)=-968+211√1927+8(83+16√19)9-158+√193
Step 11.2.1.13
Cancel the common factor of 3.
Step 11.2.1.13.1
Factor 3 out of -15.
f(8+√193)=-968+211√1927+8(83+16√19)9+3(-5)(8+√193)
Step 11.2.1.13.2
Cancel the common factor.
f(8+√193)=-968+211√1927+8(83+16√19)9+3⋅(-58+√193)
Step 11.2.1.13.3
Rewrite the expression.
f(8+√193)=-968+211√1927+8(83+16√19)9-5(8+√19)
f(8+√193)=-968+211√1927+8(83+16√19)9-5(8+√19)
Step 11.2.1.14
Apply the distributive property.
f(8+√193)=-968+211√1927+8(83+16√19)9-5⋅8-5√19
Step 11.2.1.15
Multiply -5 by 8.
f(8+√193)=-968+211√1927+8(83+16√19)9-40-5√19
f(8+√193)=-968+211√1927+8(83+16√19)9-40-5√19
Step 11.2.2
To write 8(83+16√19)9 as a fraction with a common denominator, multiply by 33.
f(8+√193)=-968+211√1927+8(83+16√19)9⋅33-40-5√19
Step 11.2.3
Write each expression with a common denominator of 27, by multiplying each by an appropriate factor of 1.
Step 11.2.3.1
Multiply 8(83+16√19)9 by 33.
f(8+√193)=-968+211√1927+8(83+16√19)⋅39⋅3-40-5√19
Step 11.2.3.2
Multiply 9 by 3.
f(8+√193)=-968+211√1927+8(83+16√19)⋅327-40-5√19
f(8+√193)=-968+211√1927+8(83+16√19)⋅327-40-5√19
Step 11.2.4
Combine the numerators over the common denominator.
f(8+√193)=-(968+211√19)+8(83+16√19)⋅327-40-5√19
Step 11.2.5
Simplify the numerator.
Step 11.2.5.1
Apply the distributive property.
f(8+√193)=-1⋅968-(211√19)+8(83+16√19)⋅327-40-5√19
Step 11.2.5.2
Multiply -1 by 968.
f(8+√193)=-968-(211√19)+8(83+16√19)⋅327-40-5√19
Step 11.2.5.3
Multiply 211 by -1.
f(8+√193)=-968-211√19+8(83+16√19)⋅327-40-5√19
Step 11.2.5.4
Apply the distributive property.
f(8+√193)=-968-211√19+(8⋅83+8(16√19))⋅327-40-5√19
Step 11.2.5.5
Multiply 8 by 83.
f(8+√193)=-968-211√19+(664+8(16√19))⋅327-40-5√19
Step 11.2.5.6
Multiply 16 by 8.
f(8+√193)=-968-211√19+(664+128√19)⋅327-40-5√19
Step 11.2.5.7
Apply the distributive property.
f(8+√193)=-968-211√19+664⋅3+128√19⋅327-40-5√19
Step 11.2.5.8
Multiply 664 by 3.
f(8+√193)=-968-211√19+1992+128√19⋅327-40-5√19
Step 11.2.5.9
Multiply 3 by 128.
f(8+√193)=-968-211√19+1992+384√1927-40-5√19
Step 11.2.5.10
Add -968 and 1992.
f(8+√193)=1024-211√19+384√1927-40-5√19
Step 11.2.5.11
Add -211√19 and 384√19.
f(8+√193)=1024+173√1927-40-5√19
f(8+√193)=1024+173√1927-40-5√19
Step 11.2.6
To write -40 as a fraction with a common denominator, multiply by 2727.
f(8+√193)=1024+173√1927-40⋅2727-5√19
Step 11.2.7
Combine -40 and 2727.
f(8+√193)=1024+173√1927+-40⋅2727-5√19
Step 11.2.8
Simplify the expression.
Step 11.2.8.1
Combine the numerators over the common denominator.
f(8+√193)=1024+173√19-40⋅2727-5√19
Step 11.2.8.2
Multiply -40 by 27.
f(8+√193)=1024+173√19-108027-5√19
Step 11.2.8.3
Subtract 1080 from 1024.
f(8+√193)=-56+173√1927-5√19
f(8+√193)=-56+173√1927-5√19
Step 11.2.9
To write -5√19 as a fraction with a common denominator, multiply by 2727.
f(8+√193)=-56+173√1927-5√19⋅2727
Step 11.2.10
Combine fractions.
Step 11.2.10.1
Combine -5√19 and 2727.
f(8+√193)=-56+173√1927+-5√19⋅2727
Step 11.2.10.2
Combine the numerators over the common denominator.
f(8+√193)=-56+173√19-5√19⋅2727
f(8+√193)=-56+173√19-5√19⋅2727
Step 11.2.11
Simplify the numerator.
Step 11.2.11.1
Multiply 27 by -5.
f(8+√193)=-56+173√19-135√1927
Step 11.2.11.2
Subtract 135√19 from 173√19.
f(8+√193)=-56+38√1927
f(8+√193)=-56+38√1927
Step 11.2.12
Simplify with factoring out.
Step 11.2.12.1
Rewrite -56 as -1(56).
f(8+√193)=-1⋅56+38√1927
Step 11.2.12.2
Factor -1 out of 38√19.
f(8+√193)=-1⋅56-(-38√19)27
Step 11.2.12.3
Factor -1 out of -1(56)-(-38√19).
f(8+√193)=-1(56-38√19)27
Step 11.2.12.4
Move the negative in front of the fraction.
f(8+√193)=-56-38√1927
f(8+√193)=-56-38√1927
Step 11.2.13
The final answer is -56-38√1927.
y=-56-38√1927
y=-56-38√1927
y=-56-38√1927
Step 12
Evaluate the second derivative at x=8-√193. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
-68-√193+16
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Cancel the common factor of 3.
Step 13.1.1.1
Factor 3 out of -6.
3(-2)8-√193+16
Step 13.1.1.2
Cancel the common factor.
3⋅-28-√193+16
Step 13.1.1.3
Rewrite the expression.
-2(8-√19)+16
-2(8-√19)+16
Step 13.1.2
Apply the distributive property.
-2⋅8-2(-√19)+16
Step 13.1.3
Multiply -2 by 8.
-16-2(-√19)+16
Step 13.1.4
Multiply -1 by -2.
-16+2√19+16
-16+2√19+16
Step 13.2
Simplify by adding numbers.
Step 13.2.1
Add -16 and 16.
0+2√19
Step 13.2.2
Add 0 and 2√19.
2√19
2√19
2√19
Step 14
x=8-√193 is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
x=8-√193 is a local minimum
Step 15
Step 15.1
Replace the variable x with 8-√193 in the expression.
f(8-√193)=-(8-√193)3+8(8-√193)2-158-√193
Step 15.2
Simplify the result.
Step 15.2.1
Simplify each term.
Step 15.2.1.1
Apply the product rule to 8-√193.
f(8-√193)=-(8-√19)333+8(8-√193)2-158-√193
Step 15.2.1.2
Raise 3 to the power of 3.
f(8-√193)=-(8-√19)327+8(8-√193)2-158-√193
Step 15.2.1.3
Use the Binomial Theorem.
f(8-√193)=-83+3⋅(82(-√19))+3⋅(8(-√19)2)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4
Simplify each term.
Step 15.2.1.4.1
Raise 8 to the power of 3.
f(8-√193)=-512+3⋅(82(-√19))+3⋅(8(-√19)2)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.2
Raise 8 to the power of 2.
f(8-√193)=-512+3⋅(64(-√19))+3⋅(8(-√19)2)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.3
Multiply 3 by 64.
f(8-√193)=-512+192(-√19)+3⋅(8(-√19)2)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.4
Multiply -1 by 192.
f(8-√193)=-512-192√19+3⋅(8(-√19)2)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.5
Multiply 3 by 8.
f(8-√193)=-512-192√19+24(-√19)2+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.6
Apply the product rule to -√19.
f(8-√193)=-512-192√19+24((-1)2√192)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.7
Raise -1 to the power of 2.
f(8-√193)=-512-192√19+24(1√192)+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.8
Multiply √192 by 1.
f(8-√193)=-512-192√19+24√192+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9
Rewrite √192 as 19.
Step 15.2.1.4.9.1
Use n√ax=axn to rewrite √19 as 1912.
f(8-√193)=-512-192√19+24(1912)2+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8-√193)=-512-192√19+24⋅1912⋅2+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9.3
Combine 12 and 2.
f(8-√193)=-512-192√19+24⋅1922+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9.4
Cancel the common factor of 2.
Step 15.2.1.4.9.4.1
Cancel the common factor.
f(8-√193)=-512-192√19+24⋅1922+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9.4.2
Rewrite the expression.
f(8-√193)=-512-192√19+24⋅19+(-√19)327+8(8-√193)2-158-√193
f(8-√193)=-512-192√19+24⋅19+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.9.5
Evaluate the exponent.
f(8-√193)=-512-192√19+24⋅19+(-√19)327+8(8-√193)2-158-√193
f(8-√193)=-512-192√19+24⋅19+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.10
Multiply 24 by 19.
f(8-√193)=-512-192√19+456+(-√19)327+8(8-√193)2-158-√193
Step 15.2.1.4.11
Apply the product rule to -√19.
f(8-√193)=-512-192√19+456+(-1)3√19327+8(8-√193)2-158-√193
Step 15.2.1.4.12
Raise -1 to the power of 3.
f(8-√193)=-512-192√19+456-√19327+8(8-√193)2-158-√193
Step 15.2.1.4.13
Rewrite √193 as √193.
f(8-√193)=-512-192√19+456-√19327+8(8-√193)2-158-√193
Step 15.2.1.4.14
Raise 19 to the power of 3.
f(8-√193)=-512-192√19+456-√685927+8(8-√193)2-158-√193
Step 15.2.1.4.15
Rewrite 6859 as 192⋅19.
Step 15.2.1.4.15.1
Factor 361 out of 6859.
f(8-√193)=-512-192√19+456-√361(19)27+8(8-√193)2-158-√193
Step 15.2.1.4.15.2
Rewrite 361 as 192.
f(8-√193)=-512-192√19+456-√192⋅1927+8(8-√193)2-158-√193
f(8-√193)=-512-192√19+456-√192⋅1927+8(8-√193)2-158-√193
Step 15.2.1.4.16
Pull terms out from under the radical.
f(8-√193)=-512-192√19+456-(19√19)27+8(8-√193)2-158-√193
Step 15.2.1.4.17
Multiply 19 by -1.
f(8-√193)=-512-192√19+456-19√1927+8(8-√193)2-158-√193
f(8-√193)=-512-192√19+456-19√1927+8(8-√193)2-158-√193
Step 15.2.1.5
Add 512 and 456.
f(8-√193)=-968-192√19-19√1927+8(8-√193)2-158-√193
Step 15.2.1.6
Subtract 19√19 from -192√19.
f(8-√193)=-968-211√1927+8(8-√193)2-158-√193
Step 15.2.1.7
Apply the product rule to 8-√193.
f(8-√193)=-968-211√1927+8((8-√19)232)-158-√193
Step 15.2.1.8
Raise 3 to the power of 2.
f(8-√193)=-968-211√1927+8((8-√19)29)-158-√193
Step 15.2.1.9
Rewrite (8-√19)2 as (8-√19)(8-√19).
f(8-√193)=-968-211√1927+8((8-√19)(8-√19)9)-158-√193
Step 15.2.1.10
Expand (8-√19)(8-√19) using the FOIL Method.
Step 15.2.1.10.1
Apply the distributive property.
f(8-√193)=-968-211√1927+8(8(8-√19)-√19(8-√19)9)-158-√193
Step 15.2.1.10.2
Apply the distributive property.
f(8-√193)=-968-211√1927+8(8⋅8+8(-√19)-√19(8-√19)9)-158-√193
Step 15.2.1.10.3
Apply the distributive property.
f(8-√193)=-968-211√1927+8(8⋅8+8(-√19)-√19⋅8-√19(-√19)9)-158-√193
f(8-√193)=-968-211√1927+8(8⋅8+8(-√19)-√19⋅8-√19(-√19)9)-158-√193
Step 15.2.1.11
Simplify and combine like terms.
Step 15.2.1.11.1
Simplify each term.
Step 15.2.1.11.1.1
Multiply 8 by 8.
f(8-√193)=-968-211√1927+8(64+8(-√19)-√19⋅8-√19(-√19)9)-158-√193
Step 15.2.1.11.1.2
Multiply -1 by 8.
f(8-√193)=-968-211√1927+8(64-8√19-√19⋅8-√19(-√19)9)-158-√193
Step 15.2.1.11.1.3
Multiply 8 by -1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19-√19(-√19)9)-158-√193
Step 15.2.1.11.1.4
Multiply -√19(-√19).
Step 15.2.1.11.1.4.1
Multiply -1 by -1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+1√19√199)-158-√193
Step 15.2.1.11.1.4.2
Multiply √19 by 1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√19√199)-158-√193
Step 15.2.1.11.1.4.3
Raise √19 to the power of 1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√19√199)-158-√193
Step 15.2.1.11.1.4.4
Raise √19 to the power of 1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√19√199)-158-√193
Step 15.2.1.11.1.4.5
Use the power rule aman=am+n to combine exponents.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√191+19)-158-√193
Step 15.2.1.11.1.4.6
Add 1 and 1.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√1929)-158-√193
f(8-√193)=-968-211√1927+8(64-8√19-8√19+√1929)-158-√193
Step 15.2.1.11.1.5
Rewrite √192 as 19.
Step 15.2.1.11.1.5.1
Use n√ax=axn to rewrite √19 as 1912.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+(1912)29)-158-√193
Step 15.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+1912⋅29)-158-√193
Step 15.2.1.11.1.5.3
Combine 12 and 2.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+19229)-158-√193
Step 15.2.1.11.1.5.4
Cancel the common factor of 2.
Step 15.2.1.11.1.5.4.1
Cancel the common factor.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+19229)-158-√193
Step 15.2.1.11.1.5.4.2
Rewrite the expression.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+199)-158-√193
f(8-√193)=-968-211√1927+8(64-8√19-8√19+199)-158-√193
Step 15.2.1.11.1.5.5
Evaluate the exponent.
f(8-√193)=-968-211√1927+8(64-8√19-8√19+199)-158-√193
f(8-√193)=-968-211√1927+8(64-8√19-8√19+199)-158-√193
f(8-√193)=-968-211√1927+8(64-8√19-8√19+199)-158-√193
Step 15.2.1.11.2
Add 64 and 19.
f(8-√193)=-968-211√1927+8(83-8√19-8√199)-158-√193
Step 15.2.1.11.3
Subtract 8√19 from -8√19.
f(8-√193)=-968-211√1927+8(83-16√199)-158-√193
f(8-√193)=-968-211√1927+8(83-16√199)-158-√193
Step 15.2.1.12
Combine 8 and 83-16√199.
f(8-√193)=-968-211√1927+8(83-16√19)9-158-√193
Step 15.2.1.13
Cancel the common factor of 3.
Step 15.2.1.13.1
Factor 3 out of -15.
f(8-√193)=-968-211√1927+8(83-16√19)9+3(-5)(8-√193)
Step 15.2.1.13.2
Cancel the common factor.
f(8-√193)=-968-211√1927+8(83-16√19)9+3⋅(-58-√193)
Step 15.2.1.13.3
Rewrite the expression.
f(8-√193)=-968-211√1927+8(83-16√19)9-5(8-√19)
f(8-√193)=-968-211√1927+8(83-16√19)9-5(8-√19)
Step 15.2.1.14
Apply the distributive property.
f(8-√193)=-968-211√1927+8(83-16√19)9-5⋅8-5(-√19)
Step 15.2.1.15
Multiply -5 by 8.
f(8-√193)=-968-211√1927+8(83-16√19)9-40-5(-√19)
Step 15.2.1.16
Multiply -1 by -5.
f(8-√193)=-968-211√1927+8(83-16√19)9-40+5√19
f(8-√193)=-968-211√1927+8(83-16√19)9-40+5√19
Step 15.2.2
To write 8(83-16√19)9 as a fraction with a common denominator, multiply by 33.
f(8-√193)=-968-211√1927+8(83-16√19)9⋅33-40+5√19
Step 15.2.3
Write each expression with a common denominator of 27, by multiplying each by an appropriate factor of 1.
Step 15.2.3.1
Multiply 8(83-16√19)9 by 33.
f(8-√193)=-968-211√1927+8(83-16√19)⋅39⋅3-40+5√19
Step 15.2.3.2
Multiply 9 by 3.
f(8-√193)=-968-211√1927+8(83-16√19)⋅327-40+5√19
f(8-√193)=-968-211√1927+8(83-16√19)⋅327-40+5√19
Step 15.2.4
Combine the numerators over the common denominator.
f(8-√193)=-(968-211√19)+8(83-16√19)⋅327-40+5√19
Step 15.2.5
Simplify the numerator.
Step 15.2.5.1
Apply the distributive property.
f(8-√193)=-1⋅968-(-211√19)+8(83-16√19)⋅327-40+5√19
Step 15.2.5.2
Multiply -1 by 968.
f(8-√193)=-968-(-211√19)+8(83-16√19)⋅327-40+5√19
Step 15.2.5.3
Multiply -211 by -1.
f(8-√193)=-968+211√19+8(83-16√19)⋅327-40+5√19
Step 15.2.5.4
Apply the distributive property.
f(8-√193)=-968+211√19+(8⋅83+8(-16√19))⋅327-40+5√19
Step 15.2.5.5
Multiply 8 by 83.
f(8-√193)=-968+211√19+(664+8(-16√19))⋅327-40+5√19
Step 15.2.5.6
Multiply -16 by 8.
f(8-√193)=-968+211√19+(664-128√19)⋅327-40+5√19
Step 15.2.5.7
Apply the distributive property.
f(8-√193)=-968+211√19+664⋅3-128√19⋅327-40+5√19
Step 15.2.5.8
Multiply 664 by 3.
f(8-√193)=-968+211√19+1992-128√19⋅327-40+5√19
Step 15.2.5.9
Multiply 3 by -128.
f(8-√193)=-968+211√19+1992-384√1927-40+5√19
Step 15.2.5.10
Add -968 and 1992.
f(8-√193)=1024+211√19-384√1927-40+5√19
Step 15.2.5.11
Subtract 384√19 from 211√19.
f(8-√193)=1024-173√1927-40+5√19
f(8-√193)=1024-173√1927-40+5√19
Step 15.2.6
To write -40 as a fraction with a common denominator, multiply by 2727.
f(8-√193)=1024-173√1927-40⋅2727+5√19
Step 15.2.7
Combine -40 and 2727.
f(8-√193)=1024-173√1927+-40⋅2727+5√19
Step 15.2.8
Simplify the expression.
Step 15.2.8.1
Combine the numerators over the common denominator.
f(8-√193)=1024-173√19-40⋅2727+5√19
Step 15.2.8.2
Multiply -40 by 27.
f(8-√193)=1024-173√19-108027+5√19
Step 15.2.8.3
Subtract 1080 from 1024.
f(8-√193)=-56-173√1927+5√19
f(8-√193)=-56-173√1927+5√19
Step 15.2.9
To write 5√19 as a fraction with a common denominator, multiply by 2727.
f(8-√193)=-56-173√1927+5√19⋅2727
Step 15.2.10
Combine fractions.
Step 15.2.10.1
Combine 5√19 and 2727.
f(8-√193)=-56-173√1927+5√19⋅2727
Step 15.2.10.2
Combine the numerators over the common denominator.
f(8-√193)=-56-173√19+5√19⋅2727
f(8-√193)=-56-173√19+5√19⋅2727
Step 15.2.11
Simplify the numerator.
Step 15.2.11.1
Multiply 27 by 5.
f(8-√193)=-56-173√19+135√1927
Step 15.2.11.2
Add -173√19 and 135√19.
f(8-√193)=-56-38√1927
f(8-√193)=-56-38√1927
Step 15.2.12
Simplify with factoring out.
Step 15.2.12.1
Rewrite -56 as -1(56).
f(8-√193)=-1⋅56-38√1927
Step 15.2.12.2
Factor -1 out of -38√19.
f(8-√193)=-1⋅56-(38√19)27
Step 15.2.12.3
Factor -1 out of -1(56)-(38√19).
f(8-√193)=-1(56+38√19)27
Step 15.2.12.4
Move the negative in front of the fraction.
f(8-√193)=-56+38√1927
f(8-√193)=-56+38√1927
Step 15.2.13
The final answer is -56+38√1927.
y=-56+38√1927
y=-56+38√1927
y=-56+38√1927
Step 16
These are the local extrema for f(x)=-x3+8x2-15x.
(8+√193,-56-38√1927) is a local maxima
(8-√193,-56+38√1927) is a local minima
Step 17
