Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=-x^3+8x^2-15x
f(x)=-x3+8x2-15xf(x)=x3+8x215x
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of -x3+8x2-15xx3+8x215x with respect to xx is ddx[-x3]+ddx[8x2]+ddx[-15x]ddx[x3]+ddx[8x2]+ddx[15x].
ddx[-x3]+ddx[8x2]+ddx[-15x]ddx[x3]+ddx[8x2]+ddx[15x]
Step 1.2
Evaluate ddx[-x3]ddx[x3].
Tap for more steps...
Step 1.2.1
Since -11 is constant with respect to xx, the derivative of -x3x3 with respect to xx is -ddx[x3]ddx[x3].
-ddx[x3]+ddx[8x2]+ddx[-15x]ddx[x3]+ddx[8x2]+ddx[15x]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
-(3x2)+ddx[8x2]+ddx[-15x](3x2)+ddx[8x2]+ddx[15x]
Step 1.2.3
Multiply 33 by -11.
-3x2+ddx[8x2]+ddx[-15x]3x2+ddx[8x2]+ddx[15x]
-3x2+ddx[8x2]+ddx[-15x]3x2+ddx[8x2]+ddx[15x]
Step 1.3
Evaluate ddx[8x2]ddx[8x2].
Tap for more steps...
Step 1.3.1
Since 88 is constant with respect to xx, the derivative of 8x28x2 with respect to xx is 8ddx[x2]8ddx[x2].
-3x2+8ddx[x2]+ddx[-15x]3x2+8ddx[x2]+ddx[15x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
-3x2+8(2x)+ddx[-15x]3x2+8(2x)+ddx[15x]
Step 1.3.3
Multiply 22 by 88.
-3x2+16x+ddx[-15x]3x2+16x+ddx[15x]
-3x2+16x+ddx[-15x]3x2+16x+ddx[15x]
Step 1.4
Evaluate ddx[-15x]ddx[15x].
Tap for more steps...
Step 1.4.1
Since -1515 is constant with respect to xx, the derivative of -15x15x with respect to xx is -15ddx[x]15ddx[x].
-3x2+16x-15ddx[x]3x2+16x15ddx[x]
Step 1.4.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
-3x2+16x-1513x2+16x151
Step 1.4.3
Multiply -1515 by 11.
-3x2+16x-153x2+16x15
-3x2+16x-153x2+16x15
-3x2+16x-153x2+16x15
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of -3x2+16x-153x2+16x15 with respect to xx is ddx[-3x2]+ddx[16x]+ddx[-15]ddx[3x2]+ddx[16x]+ddx[15].
f′′(x)=ddx(-3x2)+ddx(16x)+ddx(-15)
Step 2.2
Evaluate ddx[-3x2].
Tap for more steps...
Step 2.2.1
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
f′′(x)=-3ddxx2+ddx(16x)+ddx(-15)
Step 2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=-3(2x)+ddx(16x)+ddx(-15)
Step 2.2.3
Multiply 2 by -3.
f′′(x)=-6x+ddx(16x)+ddx(-15)
f′′(x)=-6x+ddx(16x)+ddx(-15)
Step 2.3
Evaluate ddx[16x].
Tap for more steps...
Step 2.3.1
Since 16 is constant with respect to x, the derivative of 16x with respect to x is 16ddx[x].
f′′(x)=-6x+16ddx(x)+ddx(-15)
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′′(x)=-6x+161+ddx(-15)
Step 2.3.3
Multiply 16 by 1.
f′′(x)=-6x+16+ddx(-15)
f′′(x)=-6x+16+ddx(-15)
Step 2.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.4.1
Since -15 is constant with respect to x, the derivative of -15 with respect to x is 0.
f′′(x)=-6x+16+0
Step 2.4.2
Add -6x+16 and 0.
f′′(x)=-6x+16
f′′(x)=-6x+16
f′′(x)=-6x+16
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
-3x2+16x-15=0
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of -x3+8x2-15x with respect to x is ddx[-x3]+ddx[8x2]+ddx[-15x].
ddx[-x3]+ddx[8x2]+ddx[-15x]
Step 4.1.2
Evaluate ddx[-x3].
Tap for more steps...
Step 4.1.2.1
Since -1 is constant with respect to x, the derivative of -x3 with respect to x is -ddx[x3].
-ddx[x3]+ddx[8x2]+ddx[-15x]
Step 4.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
-(3x2)+ddx[8x2]+ddx[-15x]
Step 4.1.2.3
Multiply 3 by -1.
-3x2+ddx[8x2]+ddx[-15x]
-3x2+ddx[8x2]+ddx[-15x]
Step 4.1.3
Evaluate ddx[8x2].
Tap for more steps...
Step 4.1.3.1
Since 8 is constant with respect to x, the derivative of 8x2 with respect to x is 8ddx[x2].
-3x2+8ddx[x2]+ddx[-15x]
Step 4.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
-3x2+8(2x)+ddx[-15x]
Step 4.1.3.3
Multiply 2 by 8.
-3x2+16x+ddx[-15x]
-3x2+16x+ddx[-15x]
Step 4.1.4
Evaluate ddx[-15x].
Tap for more steps...
Step 4.1.4.1
Since -15 is constant with respect to x, the derivative of -15x with respect to x is -15ddx[x].
-3x2+16x-15ddx[x]
Step 4.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-3x2+16x-151
Step 4.1.4.3
Multiply -15 by 1.
f(x)=-3x2+16x-15
f(x)=-3x2+16x-15
f(x)=-3x2+16x-15
Step 4.2
The first derivative of f(x) with respect to x is -3x2+16x-15.
-3x2+16x-15
-3x2+16x-15
Step 5
Set the first derivative equal to 0 then solve the equation -3x2+16x-15=0.
Tap for more steps...
Step 5.1
Set the first derivative equal to 0.
-3x2+16x-15=0
Step 5.2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 5.3
Substitute the values a=-3, b=16, and c=-15 into the quadratic formula and solve for x.
-16±162-4(-3-15)2-3
Step 5.4
Simplify.
Tap for more steps...
Step 5.4.1
Simplify the numerator.
Tap for more steps...
Step 5.4.1.1
Raise 16 to the power of 2.
x=-16±256-4-3-152-3
Step 5.4.1.2
Multiply -4-3-15.
Tap for more steps...
Step 5.4.1.2.1
Multiply -4 by -3.
x=-16±256+12-152-3
Step 5.4.1.2.2
Multiply 12 by -15.
x=-16±256-1802-3
x=-16±256-1802-3
Step 5.4.1.3
Subtract 180 from 256.
x=-16±762-3
Step 5.4.1.4
Rewrite 76 as 2219.
Tap for more steps...
Step 5.4.1.4.1
Factor 4 out of 76.
x=-16±4(19)2-3
Step 5.4.1.4.2
Rewrite 4 as 22.
x=-16±22192-3
x=-16±22192-3
Step 5.4.1.5
Pull terms out from under the radical.
x=-16±2192-3
x=-16±2192-3
Step 5.4.2
Multiply 2 by -3.
x=-16±219-6
Step 5.4.3
Simplify -16±219-6.
x=8±193
x=8±193
Step 5.5
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 5.5.1
Simplify the numerator.
Tap for more steps...
Step 5.5.1.1
Raise 16 to the power of 2.
x=-16±256-4-3-152-3
Step 5.5.1.2
Multiply -4-3-15.
Tap for more steps...
Step 5.5.1.2.1
Multiply -4 by -3.
x=-16±256+12-152-3
Step 5.5.1.2.2
Multiply 12 by -15.
x=-16±256-1802-3
x=-16±256-1802-3
Step 5.5.1.3
Subtract 180 from 256.
x=-16±762-3
Step 5.5.1.4
Rewrite 76 as 2219.
Tap for more steps...
Step 5.5.1.4.1
Factor 4 out of 76.
x=-16±4(19)2-3
Step 5.5.1.4.2
Rewrite 4 as 22.
x=-16±22192-3
x=-16±22192-3
Step 5.5.1.5
Pull terms out from under the radical.
x=-16±2192-3
x=-16±2192-3
Step 5.5.2
Multiply 2 by -3.
x=-16±219-6
Step 5.5.3
Simplify -16±219-6.
x=8±193
Step 5.5.4
Change the ± to +.
x=8+193
x=8+193
Step 5.6
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 5.6.1
Simplify the numerator.
Tap for more steps...
Step 5.6.1.1
Raise 16 to the power of 2.
x=-16±256-4-3-152-3
Step 5.6.1.2
Multiply -4-3-15.
Tap for more steps...
Step 5.6.1.2.1
Multiply -4 by -3.
x=-16±256+12-152-3
Step 5.6.1.2.2
Multiply 12 by -15.
x=-16±256-1802-3
x=-16±256-1802-3
Step 5.6.1.3
Subtract 180 from 256.
x=-16±762-3
Step 5.6.1.4
Rewrite 76 as 2219.
Tap for more steps...
Step 5.6.1.4.1
Factor 4 out of 76.
x=-16±4(19)2-3
Step 5.6.1.4.2
Rewrite 4 as 22.
x=-16±22192-3
x=-16±22192-3
Step 5.6.1.5
Pull terms out from under the radical.
x=-16±2192-3
x=-16±2192-3
Step 5.6.2
Multiply 2 by -3.
x=-16±219-6
Step 5.6.3
Simplify -16±219-6.
x=8±193
Step 5.6.4
Change the ± to -.
x=8-193
x=8-193
Step 5.7
The final answer is the combination of both solutions.
x=8+193,8-193
x=8+193,8-193
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
x=8+193,8-193
Step 8
Evaluate the second derivative at x=8+193. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
-68+193+16
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify each term.
Tap for more steps...
Step 9.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 9.1.1.1
Factor 3 out of -6.
3(-2)8+193+16
Step 9.1.1.2
Cancel the common factor.
3-28+193+16
Step 9.1.1.3
Rewrite the expression.
-2(8+19)+16
-2(8+19)+16
Step 9.1.2
Apply the distributive property.
-28-219+16
Step 9.1.3
Multiply -2 by 8.
-16-219+16
-16-219+16
Step 9.2
Simplify by adding numbers.
Tap for more steps...
Step 9.2.1
Add -16 and 16.
0-219
Step 9.2.2
Subtract 219 from 0.
-219
-219
-219
Step 10
x=8+193 is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
x=8+193 is a local maximum
Step 11
Find the y-value when x=8+193.
Tap for more steps...
Step 11.1
Replace the variable x with 8+193 in the expression.
f(8+193)=-(8+193)3+8(8+193)2-158+193
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Simplify each term.
Tap for more steps...
Step 11.2.1.1
Apply the product rule to 8+193.
f(8+193)=-(8+19)333+8(8+193)2-158+193
Step 11.2.1.2
Raise 3 to the power of 3.
f(8+193)=-(8+19)327+8(8+193)2-158+193
Step 11.2.1.3
Use the Binomial Theorem.
f(8+193)=-83+3(8219)+3(8192)+19327+8(8+193)2-158+193
Step 11.2.1.4
Simplify each term.
Tap for more steps...
Step 11.2.1.4.1
Raise 8 to the power of 3.
f(8+193)=-512+3(8219)+3(8192)+19327+8(8+193)2-158+193
Step 11.2.1.4.2
Raise 8 to the power of 2.
f(8+193)=-512+3(6419)+3(8192)+19327+8(8+193)2-158+193
Step 11.2.1.4.3
Multiply 3 by 64.
f(8+193)=-512+19219+3(8192)+19327+8(8+193)2-158+193
Step 11.2.1.4.4
Multiply 3 by 8.
f(8+193)=-512+19219+24192+19327+8(8+193)2-158+193
Step 11.2.1.4.5
Rewrite 192 as 19.
Tap for more steps...
Step 11.2.1.4.5.1
Use nax=axn to rewrite 19 as 1912.
f(8+193)=-512+19219+24(1912)2+19327+8(8+193)2-158+193
Step 11.2.1.4.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8+193)=-512+19219+2419122+19327+8(8+193)2-158+193
Step 11.2.1.4.5.3
Combine 12 and 2.
f(8+193)=-512+19219+241922+19327+8(8+193)2-158+193
Step 11.2.1.4.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 11.2.1.4.5.4.1
Cancel the common factor.
f(8+193)=-512+19219+241922+19327+8(8+193)2-158+193
Step 11.2.1.4.5.4.2
Rewrite the expression.
f(8+193)=-512+19219+2419+19327+8(8+193)2-158+193
f(8+193)=-512+19219+2419+19327+8(8+193)2-158+193
Step 11.2.1.4.5.5
Evaluate the exponent.
f(8+193)=-512+19219+2419+19327+8(8+193)2-158+193
f(8+193)=-512+19219+2419+19327+8(8+193)2-158+193
Step 11.2.1.4.6
Multiply 24 by 19.
f(8+193)=-512+19219+456+19327+8(8+193)2-158+193
Step 11.2.1.4.7
Rewrite 193 as 193.
f(8+193)=-512+19219+456+19327+8(8+193)2-158+193
Step 11.2.1.4.8
Raise 19 to the power of 3.
f(8+193)=-512+19219+456+685927+8(8+193)2-158+193
Step 11.2.1.4.9
Rewrite 6859 as 19219.
Tap for more steps...
Step 11.2.1.4.9.1
Factor 361 out of 6859.
f(8+193)=-512+19219+456+361(19)27+8(8+193)2-158+193
Step 11.2.1.4.9.2
Rewrite 361 as 192.
f(8+193)=-512+19219+456+1921927+8(8+193)2-158+193
f(8+193)=-512+19219+456+1921927+8(8+193)2-158+193
Step 11.2.1.4.10
Pull terms out from under the radical.
f(8+193)=-512+19219+456+191927+8(8+193)2-158+193
f(8+193)=-512+19219+456+191927+8(8+193)2-158+193
Step 11.2.1.5
Add 512 and 456.
f(8+193)=-968+19219+191927+8(8+193)2-158+193
Step 11.2.1.6
Add 19219 and 1919.
f(8+193)=-968+2111927+8(8+193)2-158+193
Step 11.2.1.7
Apply the product rule to 8+193.
f(8+193)=-968+2111927+8((8+19)232)-158+193
Step 11.2.1.8
Raise 3 to the power of 2.
f(8+193)=-968+2111927+8((8+19)29)-158+193
Step 11.2.1.9
Rewrite (8+19)2 as (8+19)(8+19).
f(8+193)=-968+2111927+8((8+19)(8+19)9)-158+193
Step 11.2.1.10
Expand (8+19)(8+19) using the FOIL Method.
Tap for more steps...
Step 11.2.1.10.1
Apply the distributive property.
f(8+193)=-968+2111927+8(8(8+19)+19(8+19)9)-158+193
Step 11.2.1.10.2
Apply the distributive property.
f(8+193)=-968+2111927+8(88+819+19(8+19)9)-158+193
Step 11.2.1.10.3
Apply the distributive property.
f(8+193)=-968+2111927+8(88+819+198+19199)-158+193
f(8+193)=-968+2111927+8(88+819+198+19199)-158+193
Step 11.2.1.11
Simplify and combine like terms.
Tap for more steps...
Step 11.2.1.11.1
Simplify each term.
Tap for more steps...
Step 11.2.1.11.1.1
Multiply 8 by 8.
f(8+193)=-968+2111927+8(64+819+198+19199)-158+193
Step 11.2.1.11.1.2
Move 8 to the left of 19.
f(8+193)=-968+2111927+8(64+819+819+19199)-158+193
Step 11.2.1.11.1.3
Combine using the product rule for radicals.
f(8+193)=-968+2111927+8(64+819+819+19199)-158+193
Step 11.2.1.11.1.4
Multiply 19 by 19.
f(8+193)=-968+2111927+8(64+819+819+3619)-158+193
Step 11.2.1.11.1.5
Rewrite 361 as 192.
f(8+193)=-968+2111927+8(64+819+819+1929)-158+193
Step 11.2.1.11.1.6
Pull terms out from under the radical, assuming positive real numbers.
f(8+193)=-968+2111927+8(64+819+819+199)-158+193
f(8+193)=-968+2111927+8(64+819+819+199)-158+193
Step 11.2.1.11.2
Add 64 and 19.
f(8+193)=-968+2111927+8(83+819+8199)-158+193
Step 11.2.1.11.3
Add 819 and 819.
f(8+193)=-968+2111927+8(83+16199)-158+193
f(8+193)=-968+2111927+8(83+16199)-158+193
Step 11.2.1.12
Combine 8 and 83+16199.
f(8+193)=-968+2111927+8(83+1619)9-158+193
Step 11.2.1.13
Cancel the common factor of 3.
Tap for more steps...
Step 11.2.1.13.1
Factor 3 out of -15.
f(8+193)=-968+2111927+8(83+1619)9+3(-5)(8+193)
Step 11.2.1.13.2
Cancel the common factor.
f(8+193)=-968+2111927+8(83+1619)9+3(-58+193)
Step 11.2.1.13.3
Rewrite the expression.
f(8+193)=-968+2111927+8(83+1619)9-5(8+19)
f(8+193)=-968+2111927+8(83+1619)9-5(8+19)
Step 11.2.1.14
Apply the distributive property.
f(8+193)=-968+2111927+8(83+1619)9-58-519
Step 11.2.1.15
Multiply -5 by 8.
f(8+193)=-968+2111927+8(83+1619)9-40-519
f(8+193)=-968+2111927+8(83+1619)9-40-519
Step 11.2.2
To write 8(83+1619)9 as a fraction with a common denominator, multiply by 33.
f(8+193)=-968+2111927+8(83+1619)933-40-519
Step 11.2.3
Write each expression with a common denominator of 27, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 11.2.3.1
Multiply 8(83+1619)9 by 33.
f(8+193)=-968+2111927+8(83+1619)393-40-519
Step 11.2.3.2
Multiply 9 by 3.
f(8+193)=-968+2111927+8(83+1619)327-40-519
f(8+193)=-968+2111927+8(83+1619)327-40-519
Step 11.2.4
Combine the numerators over the common denominator.
f(8+193)=-(968+21119)+8(83+1619)327-40-519
Step 11.2.5
Simplify the numerator.
Tap for more steps...
Step 11.2.5.1
Apply the distributive property.
f(8+193)=-1968-(21119)+8(83+1619)327-40-519
Step 11.2.5.2
Multiply -1 by 968.
f(8+193)=-968-(21119)+8(83+1619)327-40-519
Step 11.2.5.3
Multiply 211 by -1.
f(8+193)=-968-21119+8(83+1619)327-40-519
Step 11.2.5.4
Apply the distributive property.
f(8+193)=-968-21119+(883+8(1619))327-40-519
Step 11.2.5.5
Multiply 8 by 83.
f(8+193)=-968-21119+(664+8(1619))327-40-519
Step 11.2.5.6
Multiply 16 by 8.
f(8+193)=-968-21119+(664+12819)327-40-519
Step 11.2.5.7
Apply the distributive property.
f(8+193)=-968-21119+6643+12819327-40-519
Step 11.2.5.8
Multiply 664 by 3.
f(8+193)=-968-21119+1992+12819327-40-519
Step 11.2.5.9
Multiply 3 by 128.
f(8+193)=-968-21119+1992+3841927-40-519
Step 11.2.5.10
Add -968 and 1992.
f(8+193)=1024-21119+3841927-40-519
Step 11.2.5.11
Add -21119 and 38419.
f(8+193)=1024+1731927-40-519
f(8+193)=1024+1731927-40-519
Step 11.2.6
To write -40 as a fraction with a common denominator, multiply by 2727.
f(8+193)=1024+1731927-402727-519
Step 11.2.7
Combine -40 and 2727.
f(8+193)=1024+1731927+-402727-519
Step 11.2.8
Simplify the expression.
Tap for more steps...
Step 11.2.8.1
Combine the numerators over the common denominator.
f(8+193)=1024+17319-402727-519
Step 11.2.8.2
Multiply -40 by 27.
f(8+193)=1024+17319-108027-519
Step 11.2.8.3
Subtract 1080 from 1024.
f(8+193)=-56+1731927-519
f(8+193)=-56+1731927-519
Step 11.2.9
To write -519 as a fraction with a common denominator, multiply by 2727.
f(8+193)=-56+1731927-5192727
Step 11.2.10
Combine fractions.
Tap for more steps...
Step 11.2.10.1
Combine -519 and 2727.
f(8+193)=-56+1731927+-5192727
Step 11.2.10.2
Combine the numerators over the common denominator.
f(8+193)=-56+17319-5192727
f(8+193)=-56+17319-5192727
Step 11.2.11
Simplify the numerator.
Tap for more steps...
Step 11.2.11.1
Multiply 27 by -5.
f(8+193)=-56+17319-1351927
Step 11.2.11.2
Subtract 13519 from 17319.
f(8+193)=-56+381927
f(8+193)=-56+381927
Step 11.2.12
Simplify with factoring out.
Tap for more steps...
Step 11.2.12.1
Rewrite -56 as -1(56).
f(8+193)=-156+381927
Step 11.2.12.2
Factor -1 out of 3819.
f(8+193)=-156-(-3819)27
Step 11.2.12.3
Factor -1 out of -1(56)-(-3819).
f(8+193)=-1(56-3819)27
Step 11.2.12.4
Move the negative in front of the fraction.
f(8+193)=-56-381927
f(8+193)=-56-381927
Step 11.2.13
The final answer is -56-381927.
y=-56-381927
y=-56-381927
y=-56-381927
Step 12
Evaluate the second derivative at x=8-193. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
-68-193+16
Step 13
Evaluate the second derivative.
Tap for more steps...
Step 13.1
Simplify each term.
Tap for more steps...
Step 13.1.1
Cancel the common factor of 3.
Tap for more steps...
Step 13.1.1.1
Factor 3 out of -6.
3(-2)8-193+16
Step 13.1.1.2
Cancel the common factor.
3-28-193+16
Step 13.1.1.3
Rewrite the expression.
-2(8-19)+16
-2(8-19)+16
Step 13.1.2
Apply the distributive property.
-28-2(-19)+16
Step 13.1.3
Multiply -2 by 8.
-16-2(-19)+16
Step 13.1.4
Multiply -1 by -2.
-16+219+16
-16+219+16
Step 13.2
Simplify by adding numbers.
Tap for more steps...
Step 13.2.1
Add -16 and 16.
0+219
Step 13.2.2
Add 0 and 219.
219
219
219
Step 14
x=8-193 is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
x=8-193 is a local minimum
Step 15
Find the y-value when x=8-193.
Tap for more steps...
Step 15.1
Replace the variable x with 8-193 in the expression.
f(8-193)=-(8-193)3+8(8-193)2-158-193
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Simplify each term.
Tap for more steps...
Step 15.2.1.1
Apply the product rule to 8-193.
f(8-193)=-(8-19)333+8(8-193)2-158-193
Step 15.2.1.2
Raise 3 to the power of 3.
f(8-193)=-(8-19)327+8(8-193)2-158-193
Step 15.2.1.3
Use the Binomial Theorem.
f(8-193)=-83+3(82(-19))+3(8(-19)2)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4
Simplify each term.
Tap for more steps...
Step 15.2.1.4.1
Raise 8 to the power of 3.
f(8-193)=-512+3(82(-19))+3(8(-19)2)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.2
Raise 8 to the power of 2.
f(8-193)=-512+3(64(-19))+3(8(-19)2)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.3
Multiply 3 by 64.
f(8-193)=-512+192(-19)+3(8(-19)2)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.4
Multiply -1 by 192.
f(8-193)=-512-19219+3(8(-19)2)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.5
Multiply 3 by 8.
f(8-193)=-512-19219+24(-19)2+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.6
Apply the product rule to -19.
f(8-193)=-512-19219+24((-1)2192)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.7
Raise -1 to the power of 2.
f(8-193)=-512-19219+24(1192)+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.8
Multiply 192 by 1.
f(8-193)=-512-19219+24192+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9
Rewrite 192 as 19.
Tap for more steps...
Step 15.2.1.4.9.1
Use nax=axn to rewrite 19 as 1912.
f(8-193)=-512-19219+24(1912)2+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8-193)=-512-19219+2419122+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9.3
Combine 12 and 2.
f(8-193)=-512-19219+241922+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9.4
Cancel the common factor of 2.
Tap for more steps...
Step 15.2.1.4.9.4.1
Cancel the common factor.
f(8-193)=-512-19219+241922+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9.4.2
Rewrite the expression.
f(8-193)=-512-19219+2419+(-19)327+8(8-193)2-158-193
f(8-193)=-512-19219+2419+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.9.5
Evaluate the exponent.
f(8-193)=-512-19219+2419+(-19)327+8(8-193)2-158-193
f(8-193)=-512-19219+2419+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.10
Multiply 24 by 19.
f(8-193)=-512-19219+456+(-19)327+8(8-193)2-158-193
Step 15.2.1.4.11
Apply the product rule to -19.
f(8-193)=-512-19219+456+(-1)319327+8(8-193)2-158-193
Step 15.2.1.4.12
Raise -1 to the power of 3.
f(8-193)=-512-19219+456-19327+8(8-193)2-158-193
Step 15.2.1.4.13
Rewrite 193 as 193.
f(8-193)=-512-19219+456-19327+8(8-193)2-158-193
Step 15.2.1.4.14
Raise 19 to the power of 3.
f(8-193)=-512-19219+456-685927+8(8-193)2-158-193
Step 15.2.1.4.15
Rewrite 6859 as 19219.
Tap for more steps...
Step 15.2.1.4.15.1
Factor 361 out of 6859.
f(8-193)=-512-19219+456-361(19)27+8(8-193)2-158-193
Step 15.2.1.4.15.2
Rewrite 361 as 192.
f(8-193)=-512-19219+456-1921927+8(8-193)2-158-193
f(8-193)=-512-19219+456-1921927+8(8-193)2-158-193
Step 15.2.1.4.16
Pull terms out from under the radical.
f(8-193)=-512-19219+456-(1919)27+8(8-193)2-158-193
Step 15.2.1.4.17
Multiply 19 by -1.
f(8-193)=-512-19219+456-191927+8(8-193)2-158-193
f(8-193)=-512-19219+456-191927+8(8-193)2-158-193
Step 15.2.1.5
Add 512 and 456.
f(8-193)=-968-19219-191927+8(8-193)2-158-193
Step 15.2.1.6
Subtract 1919 from -19219.
f(8-193)=-968-2111927+8(8-193)2-158-193
Step 15.2.1.7
Apply the product rule to 8-193.
f(8-193)=-968-2111927+8((8-19)232)-158-193
Step 15.2.1.8
Raise 3 to the power of 2.
f(8-193)=-968-2111927+8((8-19)29)-158-193
Step 15.2.1.9
Rewrite (8-19)2 as (8-19)(8-19).
f(8-193)=-968-2111927+8((8-19)(8-19)9)-158-193
Step 15.2.1.10
Expand (8-19)(8-19) using the FOIL Method.
Tap for more steps...
Step 15.2.1.10.1
Apply the distributive property.
f(8-193)=-968-2111927+8(8(8-19)-19(8-19)9)-158-193
Step 15.2.1.10.2
Apply the distributive property.
f(8-193)=-968-2111927+8(88+8(-19)-19(8-19)9)-158-193
Step 15.2.1.10.3
Apply the distributive property.
f(8-193)=-968-2111927+8(88+8(-19)-198-19(-19)9)-158-193
f(8-193)=-968-2111927+8(88+8(-19)-198-19(-19)9)-158-193
Step 15.2.1.11
Simplify and combine like terms.
Tap for more steps...
Step 15.2.1.11.1
Simplify each term.
Tap for more steps...
Step 15.2.1.11.1.1
Multiply 8 by 8.
f(8-193)=-968-2111927+8(64+8(-19)-198-19(-19)9)-158-193
Step 15.2.1.11.1.2
Multiply -1 by 8.
f(8-193)=-968-2111927+8(64-819-198-19(-19)9)-158-193
Step 15.2.1.11.1.3
Multiply 8 by -1.
f(8-193)=-968-2111927+8(64-819-819-19(-19)9)-158-193
Step 15.2.1.11.1.4
Multiply -19(-19).
Tap for more steps...
Step 15.2.1.11.1.4.1
Multiply -1 by -1.
f(8-193)=-968-2111927+8(64-819-819+119199)-158-193
Step 15.2.1.11.1.4.2
Multiply 19 by 1.
f(8-193)=-968-2111927+8(64-819-819+19199)-158-193
Step 15.2.1.11.1.4.3
Raise 19 to the power of 1.
f(8-193)=-968-2111927+8(64-819-819+19199)-158-193
Step 15.2.1.11.1.4.4
Raise 19 to the power of 1.
f(8-193)=-968-2111927+8(64-819-819+19199)-158-193
Step 15.2.1.11.1.4.5
Use the power rule aman=am+n to combine exponents.
f(8-193)=-968-2111927+8(64-819-819+191+19)-158-193
Step 15.2.1.11.1.4.6
Add 1 and 1.
f(8-193)=-968-2111927+8(64-819-819+1929)-158-193
f(8-193)=-968-2111927+8(64-819-819+1929)-158-193
Step 15.2.1.11.1.5
Rewrite 192 as 19.
Tap for more steps...
Step 15.2.1.11.1.5.1
Use nax=axn to rewrite 19 as 1912.
f(8-193)=-968-2111927+8(64-819-819+(1912)29)-158-193
Step 15.2.1.11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f(8-193)=-968-2111927+8(64-819-819+191229)-158-193
Step 15.2.1.11.1.5.3
Combine 12 and 2.
f(8-193)=-968-2111927+8(64-819-819+19229)-158-193
Step 15.2.1.11.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 15.2.1.11.1.5.4.1
Cancel the common factor.
f(8-193)=-968-2111927+8(64-819-819+19229)-158-193
Step 15.2.1.11.1.5.4.2
Rewrite the expression.
f(8-193)=-968-2111927+8(64-819-819+199)-158-193
f(8-193)=-968-2111927+8(64-819-819+199)-158-193
Step 15.2.1.11.1.5.5
Evaluate the exponent.
f(8-193)=-968-2111927+8(64-819-819+199)-158-193
f(8-193)=-968-2111927+8(64-819-819+199)-158-193
f(8-193)=-968-2111927+8(64-819-819+199)-158-193
Step 15.2.1.11.2
Add 64 and 19.
f(8-193)=-968-2111927+8(83-819-8199)-158-193
Step 15.2.1.11.3
Subtract 819 from -819.
f(8-193)=-968-2111927+8(83-16199)-158-193
f(8-193)=-968-2111927+8(83-16199)-158-193
Step 15.2.1.12
Combine 8 and 83-16199.
f(8-193)=-968-2111927+8(83-1619)9-158-193
Step 15.2.1.13
Cancel the common factor of 3.
Tap for more steps...
Step 15.2.1.13.1
Factor 3 out of -15.
f(8-193)=-968-2111927+8(83-1619)9+3(-5)(8-193)
Step 15.2.1.13.2
Cancel the common factor.
f(8-193)=-968-2111927+8(83-1619)9+3(-58-193)
Step 15.2.1.13.3
Rewrite the expression.
f(8-193)=-968-2111927+8(83-1619)9-5(8-19)
f(8-193)=-968-2111927+8(83-1619)9-5(8-19)
Step 15.2.1.14
Apply the distributive property.
f(8-193)=-968-2111927+8(83-1619)9-58-5(-19)
Step 15.2.1.15
Multiply -5 by 8.
f(8-193)=-968-2111927+8(83-1619)9-40-5(-19)
Step 15.2.1.16
Multiply -1 by -5.
f(8-193)=-968-2111927+8(83-1619)9-40+519
f(8-193)=-968-2111927+8(83-1619)9-40+519
Step 15.2.2
To write 8(83-1619)9 as a fraction with a common denominator, multiply by 33.
f(8-193)=-968-2111927+8(83-1619)933-40+519
Step 15.2.3
Write each expression with a common denominator of 27, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 15.2.3.1
Multiply 8(83-1619)9 by 33.
f(8-193)=-968-2111927+8(83-1619)393-40+519
Step 15.2.3.2
Multiply 9 by 3.
f(8-193)=-968-2111927+8(83-1619)327-40+519
f(8-193)=-968-2111927+8(83-1619)327-40+519
Step 15.2.4
Combine the numerators over the common denominator.
f(8-193)=-(968-21119)+8(83-1619)327-40+519
Step 15.2.5
Simplify the numerator.
Tap for more steps...
Step 15.2.5.1
Apply the distributive property.
f(8-193)=-1968-(-21119)+8(83-1619)327-40+519
Step 15.2.5.2
Multiply -1 by 968.
f(8-193)=-968-(-21119)+8(83-1619)327-40+519
Step 15.2.5.3
Multiply -211 by -1.
f(8-193)=-968+21119+8(83-1619)327-40+519
Step 15.2.5.4
Apply the distributive property.
f(8-193)=-968+21119+(883+8(-1619))327-40+519
Step 15.2.5.5
Multiply 8 by 83.
f(8-193)=-968+21119+(664+8(-1619))327-40+519
Step 15.2.5.6
Multiply -16 by 8.
f(8-193)=-968+21119+(664-12819)327-40+519
Step 15.2.5.7
Apply the distributive property.
f(8-193)=-968+21119+6643-12819327-40+519
Step 15.2.5.8
Multiply 664 by 3.
f(8-193)=-968+21119+1992-12819327-40+519
Step 15.2.5.9
Multiply 3 by -128.
f(8-193)=-968+21119+1992-3841927-40+519
Step 15.2.5.10
Add -968 and 1992.
f(8-193)=1024+21119-3841927-40+519
Step 15.2.5.11
Subtract 38419 from 21119.
f(8-193)=1024-1731927-40+519
f(8-193)=1024-1731927-40+519
Step 15.2.6
To write -40 as a fraction with a common denominator, multiply by 2727.
f(8-193)=1024-1731927-402727+519
Step 15.2.7
Combine -40 and 2727.
f(8-193)=1024-1731927+-402727+519
Step 15.2.8
Simplify the expression.
Tap for more steps...
Step 15.2.8.1
Combine the numerators over the common denominator.
f(8-193)=1024-17319-402727+519
Step 15.2.8.2
Multiply -40 by 27.
f(8-193)=1024-17319-108027+519
Step 15.2.8.3
Subtract 1080 from 1024.
f(8-193)=-56-1731927+519
f(8-193)=-56-1731927+519
Step 15.2.9
To write 519 as a fraction with a common denominator, multiply by 2727.
f(8-193)=-56-1731927+5192727
Step 15.2.10
Combine fractions.
Tap for more steps...
Step 15.2.10.1
Combine 519 and 2727.
f(8-193)=-56-1731927+5192727
Step 15.2.10.2
Combine the numerators over the common denominator.
f(8-193)=-56-17319+5192727
f(8-193)=-56-17319+5192727
Step 15.2.11
Simplify the numerator.
Tap for more steps...
Step 15.2.11.1
Multiply 27 by 5.
f(8-193)=-56-17319+1351927
Step 15.2.11.2
Add -17319 and 13519.
f(8-193)=-56-381927
f(8-193)=-56-381927
Step 15.2.12
Simplify with factoring out.
Tap for more steps...
Step 15.2.12.1
Rewrite -56 as -1(56).
f(8-193)=-156-381927
Step 15.2.12.2
Factor -1 out of -3819.
f(8-193)=-156-(3819)27
Step 15.2.12.3
Factor -1 out of -1(56)-(3819).
f(8-193)=-1(56+3819)27
Step 15.2.12.4
Move the negative in front of the fraction.
f(8-193)=-56+381927
f(8-193)=-56+381927
Step 15.2.13
The final answer is -56+381927.
y=-56+381927
y=-56+381927
y=-56+381927
Step 16
These are the local extrema for f(x)=-x3+8x2-15x.
(8+193,-56-381927) is a local maxima
(8-193,-56+381927) is a local minima
Step 17
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]