Enter a problem...
Calculus Examples
;
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Step 1.1.1.2.1
Use to rewrite as .
Step 1.1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.3
Differentiate using the chain rule, which states that is where and .
Step 1.1.1.2.3.1
To apply the Chain Rule, set as .
Step 1.1.1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3.3
Replace all occurrences of with .
Step 1.1.1.2.4
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.1.1.2.8
Combine and .
Step 1.1.1.2.9
Combine the numerators over the common denominator.
Step 1.1.1.2.10
Simplify the numerator.
Step 1.1.1.2.10.1
Multiply by .
Step 1.1.1.2.10.2
Subtract from .
Step 1.1.1.2.11
Move the negative in front of the fraction.
Step 1.1.1.2.12
Add and .
Step 1.1.1.2.13
Combine and .
Step 1.1.1.2.14
Multiply by .
Step 1.1.1.2.15
Move to the denominator using the negative exponent rule .
Step 1.1.1.2.16
Combine and .
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Add and .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Set the numerator equal to zero.
Step 1.2.3
Since , there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Apply the rule to rewrite the exponentiation as a radical.
Step 1.3.2
Set the denominator in equal to to find where the expression is undefined.
Step 1.3.3
Solve for .
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use to rewrite as .
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify .
Step 1.3.3.2.2.1.1
Apply the product rule to .
Step 1.3.3.2.2.1.2
Raise to the power of .
Step 1.3.3.2.2.1.3
Multiply the exponents in .
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 1.3.3.2.2.1.3.2
Cancel the common factor of .
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising to any positive power yields .
Step 1.3.3.3
Solve for .
Step 1.3.3.3.1
Divide each term in by and simplify.
Step 1.3.3.3.1.1
Divide each term in by .
Step 1.3.3.3.1.2
Simplify the left side.
Step 1.3.3.3.1.2.1
Cancel the common factor of .
Step 1.3.3.3.1.2.1.1
Cancel the common factor.
Step 1.3.3.3.1.2.1.2
Divide by .
Step 1.3.3.3.1.3
Simplify the right side.
Step 1.3.3.3.1.3.1
Divide by .
Step 1.3.3.3.2
Set the equal to .
Step 1.3.3.3.3
Add to both sides of the equation.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Subtract from .
Step 1.4.1.2.1.2
Rewrite as .
Step 1.4.1.2.1.3
Pull terms out from under the radical, assuming real numbers.
Step 1.4.1.2.1.4
Multiply by .
Step 1.4.1.2.2
Subtract from .
Step 1.4.2
List all of the points.
Step 2
Step 2.1
Evaluate at .
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify each term.
Step 2.1.2.1
Subtract from .
Step 2.1.2.2
Rewrite as .
Step 2.1.2.2.1
Rewrite as .
Step 2.1.2.2.2
Rewrite as .
Step 2.1.2.3
Pull terms out from under the radical.
Step 2.1.2.4
Rewrite as .
Step 2.1.2.5
Multiply by .
Step 2.2
Evaluate at .
Step 2.2.1
Substitute for .
Step 2.2.2
Subtract from .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4