Calculus Examples

Find the Absolute Max and Min over the Interval 1/x
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Differentiate using the Power Rule which states that is where .
Step 1.3
Rewrite the expression using the negative exponent rule .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
Rewrite as .
Step 2.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2.2
Multiply by .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Multiply by .
Step 2.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.6
Simplify the expression.
Tap for more steps...
Step 2.2.6.1
Multiply by .
Step 2.2.6.2
Add and .
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Rewrite the expression using the negative exponent rule .
Step 2.3.2
Combine and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Since there is no value of that makes the first derivative equal to , there are no local extrema.
No Local Extrema
Step 5
No Local Extrema
Step 6