Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=(2x^(5/2))/5-(2x^(3/2))/3-6 , [0,4]
f(x)=2x525-2x323-6f(x)=2x5252x3236 , [0,4][0,4]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of 2x525-2x323-62x5252x3236 with respect to xx is ddx[2x525]+ddx[-2x323]+ddx[-6]ddx[2x525]+ddx[2x323]+ddx[6].
ddx[2x525]+ddx[-2x323]+ddx[-6]ddx[2x525]+ddx[2x323]+ddx[6]
Step 1.1.1.2
Evaluate ddx[2x525]ddx[2x525].
Tap for more steps...
Step 1.1.1.2.1
Since 2525 is constant with respect to xx, the derivative of 2x5252x525 with respect to xx is 25ddx[x52]25ddx[x52].
25ddx[x52]+ddx[-2x323]+ddx[-6]25ddx[x52]+ddx[2x323]+ddx[6]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=52n=52.
25(52x52-1)+ddx[-2x323]+ddx[-6]25(52x521)+ddx[2x323]+ddx[6]
Step 1.1.1.2.3
To write -11 as a fraction with a common denominator, multiply by 2222.
25(52x52-122)+ddx[-2x323]+ddx[-6]25(52x52122)+ddx[2x323]+ddx[6]
Step 1.1.1.2.4
Combine -11 and 2222.
25(52x52+-122)+ddx[-2x323]+ddx[-6]25(52x52+122)+ddx[2x323]+ddx[6]
Step 1.1.1.2.5
Combine the numerators over the common denominator.
25(52x5-122)+ddx[-2x323]+ddx[-6]25(52x5122)+ddx[2x323]+ddx[6]
Step 1.1.1.2.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.2.6.1
Multiply -11 by 22.
25(52x5-22)+ddx[-2x323]+ddx[-6]25(52x522)+ddx[2x323]+ddx[6]
Step 1.1.1.2.6.2
Subtract 22 from 55.
25(52x32)+ddx[-2x323]+ddx[-6]25(52x32)+ddx[2x323]+ddx[6]
25(52x32)+ddx[-2x323]+ddx[-6]25(52x32)+ddx[2x323]+ddx[6]
Step 1.1.1.2.7
Combine 5252 and x32x32.
255x322+ddx[-2x323]+ddx[-6]255x322+ddx[2x323]+ddx[6]
Step 1.1.1.2.8
Multiply 2525 by 5x3225x322.
2(5x32)52+ddx[-2x323]+ddx[-6]2(5x32)52+ddx[2x323]+ddx[6]
Step 1.1.1.2.9
Multiply 55 by 22.
10x3252+ddx[-2x323]+ddx[-6]10x3252+ddx[2x323]+ddx[6]
Step 1.1.1.2.10
Multiply 55 by 22.
10x3210+ddx[-2x323]+ddx[-6]10x3210+ddx[2x323]+ddx[6]
Step 1.1.1.2.11
Cancel the common factor.
10x3210+ddx[-2x323]+ddx[-6]
Step 1.1.1.2.12
Divide x32 by 1.
x32+ddx[-2x323]+ddx[-6]
x32+ddx[-2x323]+ddx[-6]
Step 1.1.1.3
Evaluate ddx[-2x323].
Tap for more steps...
Step 1.1.1.3.1
Since -23 is constant with respect to x, the derivative of -2x323 with respect to x is -23ddx[x32].
x32-23ddx[x32]+ddx[-6]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=32.
x32-23(32x32-1)+ddx[-6]
Step 1.1.1.3.3
To write -1 as a fraction with a common denominator, multiply by 22.
x32-23(32x32-122)+ddx[-6]
Step 1.1.1.3.4
Combine -1 and 22.
x32-23(32x32+-122)+ddx[-6]
Step 1.1.1.3.5
Combine the numerators over the common denominator.
x32-23(32x3-122)+ddx[-6]
Step 1.1.1.3.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.3.6.1
Multiply -1 by 2.
x32-23(32x3-22)+ddx[-6]
Step 1.1.1.3.6.2
Subtract 2 from 3.
x32-23(32x12)+ddx[-6]
x32-23(32x12)+ddx[-6]
Step 1.1.1.3.7
Combine 32 and x12.
x32-233x122+ddx[-6]
Step 1.1.1.3.8
Multiply 3x122 by 23.
x32-3x12223+ddx[-6]
Step 1.1.1.3.9
Multiply 2 by 3.
x32-6x1223+ddx[-6]
Step 1.1.1.3.10
Multiply 2 by 3.
x32-6x126+ddx[-6]
Step 1.1.1.3.11
Cancel the common factor.
x32-6x126+ddx[-6]
Step 1.1.1.3.12
Divide x12 by 1.
x32-x12+ddx[-6]
x32-x12+ddx[-6]
Step 1.1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.4.1
Since -6 is constant with respect to x, the derivative of -6 with respect to x is 0.
x32-x12+0
Step 1.1.1.4.2
Add x32-x12 and 0.
f(x)=x32-x12
f(x)=x32-x12
f(x)=x32-x12
Step 1.1.2
The first derivative of f(x) with respect to x is x32-x12.
x32-x12
x32-x12
Step 1.2
Set the first derivative equal to 0 then solve the equation x32-x12=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
x32-x12=0
Step 1.2.2
Find a common factor x12 that is present in each term.
(x12)3-x12
Step 1.2.3
Substitute u for x12.
(u)3-(u)=0
Step 1.2.4
Solve for u.
Tap for more steps...
Step 1.2.4.1
Multiply -1 by u.
u3-u=0
Step 1.2.4.2
Factor the left side of the equation.
Tap for more steps...
Step 1.2.4.2.1
Factor u out of u3-u.
Tap for more steps...
Step 1.2.4.2.1.1
Factor u out of u3.
uu2-u=0
Step 1.2.4.2.1.2
Factor u out of -u.
uu2+u-1=0
Step 1.2.4.2.1.3
Factor u out of uu2+u-1.
u(u2-1)=0
u(u2-1)=0
Step 1.2.4.2.2
Rewrite 1 as 12.
u(u2-12)=0
Step 1.2.4.2.3
Factor.
Tap for more steps...
Step 1.2.4.2.3.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=u and b=1.
u((u+1)(u-1))=0
Step 1.2.4.2.3.2
Remove unnecessary parentheses.
u(u+1)(u-1)=0
u(u+1)(u-1)=0
u(u+1)(u-1)=0
Step 1.2.4.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u=0
u+1=0
u-1=0
Step 1.2.4.4
Set u equal to 0.
u=0
Step 1.2.4.5
Set u+1 equal to 0 and solve for u.
Tap for more steps...
Step 1.2.4.5.1
Set u+1 equal to 0.
u+1=0
Step 1.2.4.5.2
Subtract 1 from both sides of the equation.
u=-1
u=-1
Step 1.2.4.6
Set u-1 equal to 0 and solve for u.
Tap for more steps...
Step 1.2.4.6.1
Set u-1 equal to 0.
u-1=0
Step 1.2.4.6.2
Add 1 to both sides of the equation.
u=1
u=1
Step 1.2.4.7
The final solution is all the values that make u(u+1)(u-1)=0 true.
u=0,-1,1
u=0,-1,1
Step 1.2.5
Substitute x for u.
x12=0,-1,1
Step 1.2.6
Solve for x12=0 for x.
Tap for more steps...
Step 1.2.6.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=02
Step 1.2.6.2
Simplify the exponent.
Tap for more steps...
Step 1.2.6.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.6.2.1.1
Simplify (x12)2.
Tap for more steps...
Step 1.2.6.2.1.1.1
Multiply the exponents in (x12)2.
Tap for more steps...
Step 1.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x122=02
Step 1.2.6.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.6.2.1.1.1.2.1
Cancel the common factor.
x122=02
Step 1.2.6.2.1.1.1.2.2
Rewrite the expression.
x1=02
x1=02
x1=02
Step 1.2.6.2.1.1.2
Simplify.
x=02
x=02
x=02
Step 1.2.6.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.6.2.2.1
Raising 0 to any positive power yields 0.
x=0
x=0
x=0
x=0
Step 1.2.7
Solve for x12=-1 for x.
Tap for more steps...
Step 1.2.7.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(x12)2=(-1)2
Step 1.2.7.2
Simplify the exponent.
Tap for more steps...
Step 1.2.7.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.7.2.1.1
Simplify (x12)2.
Tap for more steps...
Step 1.2.7.2.1.1.1
Multiply the exponents in (x12)2.
Tap for more steps...
Step 1.2.7.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x122=(-1)2
Step 1.2.7.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.7.2.1.1.1.2.1
Cancel the common factor.
x122=(-1)2
Step 1.2.7.2.1.1.1.2.2
Rewrite the expression.
x1=(-1)2
x1=(-1)2
x1=(-1)2
Step 1.2.7.2.1.1.2
Simplify.
x=(-1)2
x=(-1)2
x=(-1)2
Step 1.2.7.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.7.2.2.1
Raise -1 to the power of 2.
x=1
x=1
x=1
x=1
Step 1.2.8
List all of the solutions.
x=0,1,1
x=0,1,1
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 1.3.1.1
Apply the rule xmn=nxm to rewrite the exponentiation as a radical.
x3-x12
Step 1.3.1.2
Apply the rule xmn=nxm to rewrite the exponentiation as a radical.
x3-x1
Step 1.3.1.3
Anything raised to 1 is the base itself.
x3-x
x3-x
Step 1.3.2
Set the radicand in x3 less than 0 to find where the expression is undefined.
x3<0
Step 1.3.3
Solve for x.
Tap for more steps...
Step 1.3.3.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
3x3<30
Step 1.3.3.2
Simplify the equation.
Tap for more steps...
Step 1.3.3.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.1.1
Pull terms out from under the radical.
x<30
x<30
Step 1.3.3.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify 30.
Tap for more steps...
Step 1.3.3.2.2.1.1
Rewrite 0 as 03.
x<303
Step 1.3.3.2.2.1.2
Pull terms out from under the radical.
x<0
x<0
x<0
x<0
x<0
Step 1.3.4
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
x<0
(-,0)
x<0
(-,0)
Step 1.4
Evaluate 2x525-2x323-6 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
2(0)525-2(0)323-6
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.1.1.1
Rewrite 0 as 02.
2(02)525-2(0)323-6
Step 1.4.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
202(52)5-2(0)323-6
Step 1.4.1.2.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 1.4.1.2.1.1.3.1
Cancel the common factor.
202(52)5-2(0)323-6
Step 1.4.1.2.1.1.3.2
Rewrite the expression.
2055-2(0)323-6
2055-2(0)323-6
Step 1.4.1.2.1.1.4
Raising 0 to any positive power yields 0.
205-2(0)323-6
205-2(0)323-6
Step 1.4.1.2.1.2
Multiply 2 by 0.
05-2(0)323-6
Step 1.4.1.2.1.3
Divide 0 by 5.
0-2(0)323-6
Step 1.4.1.2.1.4
Simplify the numerator.
Tap for more steps...
Step 1.4.1.2.1.4.1
Rewrite 0 as 02.
0-2(02)323-6
Step 1.4.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-202(32)3-6
Step 1.4.1.2.1.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 1.4.1.2.1.4.3.1
Cancel the common factor.
0-202(32)3-6
Step 1.4.1.2.1.4.3.2
Rewrite the expression.
0-2033-6
0-2033-6
Step 1.4.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-203-6
0-203-6
Step 1.4.1.2.1.5
Multiply 2 by 0.
0-03-6
Step 1.4.1.2.1.6
Divide 0 by 3.
0-0-6
Step 1.4.1.2.1.7
Multiply -1 by 0.
0+0-6
0+0-6
Step 1.4.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.1.2.2.1
Add 0 and 0.
0-6
Step 1.4.1.2.2.2
Subtract 6 from 0.
-6
-6
-6
-6
Step 1.4.2
Evaluate at x=1.
Tap for more steps...
Step 1.4.2.1
Substitute 1 for x.
2(1)525-2(1)323-6
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
One to any power is one.
215-2(1)323-6
Step 1.4.2.2.1.2
Multiply 2 by 1.
25-2(1)323-6
Step 1.4.2.2.1.3
One to any power is one.
25-213-6
Step 1.4.2.2.1.4
Multiply 2 by 1.
25-23-6
25-23-6
Step 1.4.2.2.2
Find the common denominator.
Tap for more steps...
Step 1.4.2.2.2.1
Multiply 25 by 33.
2533-23-6
Step 1.4.2.2.2.2
Multiply 25 by 33.
2353-23-6
Step 1.4.2.2.2.3
Multiply 23 by 55.
2353-(2355)-6
Step 1.4.2.2.2.4
Multiply 23 by 55.
2353-2535-6
Step 1.4.2.2.2.5
Write -6 as a fraction with denominator 1.
2353-2535+-61
Step 1.4.2.2.2.6
Multiply -61 by 1515.
2353-2535+-611515
Step 1.4.2.2.2.7
Multiply -61 by 1515.
2353-2535+-61515
Step 1.4.2.2.2.8
Reorder the factors of 53.
2335-2535+-61515
Step 1.4.2.2.2.9
Multiply 3 by 5.
2315-2535+-61515
Step 1.4.2.2.2.10
Multiply 3 by 5.
2315-2515+-61515
2315-2515+-61515
Step 1.4.2.2.3
Combine the numerators over the common denominator.
23-25-61515
Step 1.4.2.2.4
Simplify each term.
Tap for more steps...
Step 1.4.2.2.4.1
Multiply 2 by 3.
6-25-61515
Step 1.4.2.2.4.2
Multiply -2 by 5.
6-10-61515
Step 1.4.2.2.4.3
Multiply -6 by 15.
6-10-9015
6-10-9015
Step 1.4.2.2.5
Simplify the expression.
Tap for more steps...
Step 1.4.2.2.5.1
Subtract 10 from 6.
-4-9015
Step 1.4.2.2.5.2
Subtract 90 from -4.
-9415
Step 1.4.2.2.5.3
Move the negative in front of the fraction.
-9415
-9415
-9415
-9415
Step 1.4.3
List all of the points.
(0,-6),(1,-9415)
(0,-6),(1,-9415)
(0,-6),(1,-9415)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=0.
Tap for more steps...
Step 2.1.1
Substitute 0 for x.
2(0)525-2(0)323-6
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.1.1
Rewrite 0 as 02.
2(02)525-2(0)323-6
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
202(52)5-2(0)323-6
Step 2.1.2.1.1.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.2.1.1.3.1
Cancel the common factor.
202(52)5-2(0)323-6
Step 2.1.2.1.1.3.2
Rewrite the expression.
2055-2(0)323-6
2055-2(0)323-6
Step 2.1.2.1.1.4
Raising 0 to any positive power yields 0.
205-2(0)323-6
205-2(0)323-6
Step 2.1.2.1.2
Multiply 2 by 0.
05-2(0)323-6
Step 2.1.2.1.3
Divide 0 by 5.
0-2(0)323-6
Step 2.1.2.1.4
Simplify the numerator.
Tap for more steps...
Step 2.1.2.1.4.1
Rewrite 0 as 02.
0-2(02)323-6
Step 2.1.2.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
0-202(32)3-6
Step 2.1.2.1.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.2.1.4.3.1
Cancel the common factor.
0-202(32)3-6
Step 2.1.2.1.4.3.2
Rewrite the expression.
0-2033-6
0-2033-6
Step 2.1.2.1.4.4
Raising 0 to any positive power yields 0.
0-203-6
0-203-6
Step 2.1.2.1.5
Multiply 2 by 0.
0-03-6
Step 2.1.2.1.6
Divide 0 by 3.
0-0-6
Step 2.1.2.1.7
Multiply -1 by 0.
0+0-6
0+0-6
Step 2.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.1.2.2.1
Add 0 and 0.
0-6
Step 2.1.2.2.2
Subtract 6 from 0.
-6
-6
-6
-6
Step 2.2
Evaluate at x=4.
Tap for more steps...
Step 2.2.1
Substitute 4 for x.
2(4)525-2(4)323-6
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Simplify the numerator.
Tap for more steps...
Step 2.2.2.1.1.1
Rewrite 4 as 22.
2(22)525-2(4)323-6
Step 2.2.2.1.1.2
Multiply the exponents in (22)52.
Tap for more steps...
Step 2.2.2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
222(52)5-2(4)323-6
Step 2.2.2.1.1.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.1.1.2.2.1
Cancel the common factor.
222(52)5-2(4)323-6
Step 2.2.2.1.1.2.2.2
Rewrite the expression.
2255-2(4)323-6
2255-2(4)323-6
2255-2(4)323-6
Step 2.2.2.1.1.3
Use the power rule aman=am+n to combine exponents.
21+55-2(4)323-6
Step 2.2.2.1.1.4
Add 1 and 5.
265-2(4)323-6
265-2(4)323-6
Step 2.2.2.1.2
Raise 2 to the power of 6.
645-2(4)323-6
Step 2.2.2.1.3
Simplify the numerator.
Tap for more steps...
Step 2.2.2.1.3.1
Rewrite 4 as 22.
645-2(22)323-6
Step 2.2.2.1.3.2
Multiply the exponents in (22)32.
Tap for more steps...
Step 2.2.2.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
645-222(32)3-6
Step 2.2.2.1.3.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.1.3.2.2.1
Cancel the common factor.
645-222(32)3-6
Step 2.2.2.1.3.2.2.2
Rewrite the expression.
645-2233-6
645-2233-6
645-2233-6
Step 2.2.2.1.3.3
Use the power rule aman=am+n to combine exponents.
645-21+33-6
Step 2.2.2.1.3.4
Add 1 and 3.
645-243-6
645-243-6
Step 2.2.2.1.4
Raise 2 to the power of 4.
645-163-6
645-163-6
Step 2.2.2.2
Find the common denominator.
Tap for more steps...
Step 2.2.2.2.1
Multiply 645 by 33.
64533-163-6
Step 2.2.2.2.2
Multiply 645 by 33.
64353-163-6
Step 2.2.2.2.3
Multiply 163 by 55.
64353-(16355)-6
Step 2.2.2.2.4
Multiply 163 by 55.
64353-16535-6
Step 2.2.2.2.5
Write -6 as a fraction with denominator 1.
64353-16535+-61
Step 2.2.2.2.6
Multiply -61 by 1515.
64353-16535+-611515
Step 2.2.2.2.7
Multiply -61 by 1515.
64353-16535+-61515
Step 2.2.2.2.8
Reorder the factors of 53.
64335-16535+-61515
Step 2.2.2.2.9
Multiply 3 by 5.
64315-16535+-61515
Step 2.2.2.2.10
Multiply 3 by 5.
64315-16515+-61515
64315-16515+-61515
Step 2.2.2.3
Combine the numerators over the common denominator.
643-165-61515
Step 2.2.2.4
Simplify each term.
Tap for more steps...
Step 2.2.2.4.1
Multiply 64 by 3.
192-165-61515
Step 2.2.2.4.2
Multiply -16 by 5.
192-80-61515
Step 2.2.2.4.3
Multiply -6 by 15.
192-80-9015
192-80-9015
Step 2.2.2.5
Simplify by subtracting numbers.
Tap for more steps...
Step 2.2.2.5.1
Subtract 80 from 192.
112-9015
Step 2.2.2.5.2
Subtract 90 from 112.
2215
2215
2215
2215
Step 2.3
List all of the points.
(0,-6),(4,2215)
(0,-6),(4,2215)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (4,2215)
Absolute Minimum: (1,-9415)
Step 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]