Enter a problem...
Calculus Examples
f(x)=xex2f(x)=xex2 , [-3,1][−3,1]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=xf(x)=x and g(x)=ex2g(x)=ex2.
xddx[ex2]+ex2ddx[x]xddx[ex2]+ex2ddx[x]
Step 1.1.1.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x)f'(g(x))g'(x) where f(x)=exf(x)=ex and g(x)=x2g(x)=x2.
Step 1.1.1.2.1
To apply the Chain Rule, set uu as x2x2.
x(ddu[eu]ddx[x2])+ex2ddx[x]x(ddu[eu]ddx[x2])+ex2ddx[x]
Step 1.1.1.2.2
Differentiate using the Exponential Rule which states that ddu[au]ddu[au] is auln(a)auln(a) where aa=ee.
x(euddx[x2])+ex2ddx[x]x(euddx[x2])+ex2ddx[x]
Step 1.1.1.2.3
Replace all occurrences of uu with x2x2.
x(ex2ddx[x2])+ex2ddx[x]x(ex2ddx[x2])+ex2ddx[x]
x(ex2ddx[x2])+ex2ddx[x]x(ex2ddx[x2])+ex2ddx[x]
Step 1.1.1.3
Differentiate.
Step 1.1.1.3.1
Since 1212 is constant with respect to xx, the derivative of x2x2 with respect to xx is 12ddx[x]12ddx[x].
x(ex2(12ddx[x]))+ex2ddx[x]x(ex2(12ddx[x]))+ex2ddx[x]
Step 1.1.1.3.2
Combine fractions.
Step 1.1.1.3.2.1
Combine 1212 and ex2ex2.
x(ex22ddx[x])+ex2ddx[x]x(ex22ddx[x])+ex2ddx[x]
Step 1.1.1.3.2.2
Combine ex22ex22 and xx.
ex2x2ddx[x]+ex2ddx[x]ex2x2ddx[x]+ex2ddx[x]
ex2x2ddx[x]+ex2ddx[x]ex2x2ddx[x]+ex2ddx[x]
Step 1.1.1.3.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
ex2x2⋅1+ex2ddx[x]ex2x2⋅1+ex2ddx[x]
Step 1.1.1.3.4
Multiply ex2x2ex2x2 by 11.
ex2x2+ex2ddx[x]ex2x2+ex2ddx[x]
Step 1.1.1.3.5
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
ex2x2+ex2⋅1ex2x2+ex2⋅1
Step 1.1.1.3.6
Simplify the expression.
Step 1.1.1.3.6.1
Multiply ex2ex2 by 11.
ex2x2+ex2ex2x2+ex2
Step 1.1.1.3.6.2
Reorder factors in ex2x2+ex2ex2x2+ex2.
f′(x)=xex22+ex2f'(x)=xex22+ex2
f′(x)=xex22+ex2f'(x)=xex22+ex2
f′(x)=xex22+ex2f'(x)=xex22+ex2
f′(x)=xex22+ex2f'(x)=xex22+ex2
Step 1.1.2
The first derivative of f(x)f(x) with respect to xx is xex22+ex2xex22+ex2.
xex22+ex2xex22+ex2
xex22+ex2xex22+ex2
Step 1.2
Set the first derivative equal to 00 then solve the equation xex22+ex2=0xex22+ex2=0.
Step 1.2.1
Set the first derivative equal to 00.
xex22+ex2=0xex22+ex2=0
Step 1.2.2
Factor ex2ex2 out of xex22+ex2xex22+ex2.
Step 1.2.2.1
Factor ex2ex2 out of xex22xex22.
ex2(x2)+ex2=0ex2(x2)+ex2=0
Step 1.2.2.2
Multiply by 11.
ex2(x2)+ex2⋅1=0ex2(x2)+ex2⋅1=0
Step 1.2.2.3
Factor ex2ex2 out of ex2x2+ex2⋅1ex2x2+ex2⋅1.
ex2(x2+1)=0ex2(x2+1)=0
ex2(x2+1)=0ex2(x2+1)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
ex2=0ex2=0
x2+1=0x2+1=0
Step 1.2.4
Set ex2ex2 equal to 00 and solve for xx.
Step 1.2.4.1
Set ex2 equal to 0.
ex2=0
Step 1.2.4.2
Solve ex2=0 for x.
Step 1.2.4.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ex2)=ln(0)
Step 1.2.4.2.2
The equation cannot be solved because ln(0) is undefined.
Undefined
Step 1.2.4.2.3
There is no solution for ex2=0
No solution
No solution
No solution
Step 1.2.5
Set x2+1 equal to 0 and solve for x.
Step 1.2.5.1
Set x2+1 equal to 0.
x2+1=0
Step 1.2.5.2
Solve x2+1=0 for x.
Step 1.2.5.2.1
Subtract 1 from both sides of the equation.
x2=-1
Step 1.2.5.2.2
Multiply both sides of the equation by 2.
2x2=2⋅-1
Step 1.2.5.2.3
Simplify both sides of the equation.
Step 1.2.5.2.3.1
Simplify the left side.
Step 1.2.5.2.3.1.1
Cancel the common factor of 2.
Step 1.2.5.2.3.1.1.1
Cancel the common factor.
2x2=2⋅-1
Step 1.2.5.2.3.1.1.2
Rewrite the expression.
x=2⋅-1
x=2⋅-1
x=2⋅-1
Step 1.2.5.2.3.2
Simplify the right side.
Step 1.2.5.2.3.2.1
Multiply 2 by -1.
x=-2
x=-2
x=-2
x=-2
x=-2
Step 1.2.6
The final solution is all the values that make ex2(x2+1)=0 true.
x=-2
x=-2
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate xex2 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=-2.
Step 1.4.1.1
Substitute -2 for x.
(-2)⋅e-22
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Divide -2 by 2.
-2⋅e-1
Step 1.4.1.2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
-2⋅1e
Step 1.4.1.2.3
Combine -2 and 1e.
-2e
Step 1.4.1.2.4
Move the negative in front of the fraction.
-2e
-2e
-2e
Step 1.4.2
List all of the points.
(-2,-2e)
(-2,-2e)
(-2,-2e)
Step 2
Step 2.1
Evaluate at x=-3.
Step 2.1.1
Substitute -3 for x.
(-3)⋅e-32
Step 2.1.2
Simplify.
Step 2.1.2.1
Move the negative in front of the fraction.
-3⋅e-32
Step 2.1.2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
-3⋅1e32
Step 2.1.2.3
Combine -3 and 1e32.
-3e32
Step 2.1.2.4
Move the negative in front of the fraction.
-3e32
-3e32
-3e32
Step 2.2
Evaluate at x=1.
Step 2.2.1
Substitute 1 for x.
(1)⋅e12
Step 2.2.2
Multiply e12 by 1.
e12
e12
Step 2.3
List all of the points.
(-3,-3e32),(1,e12)
(-3,-3e32),(1,e12)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (1,e12)
Absolute Minimum: (-2,-2e)
Step 4